
A Lean Formalization of Cedar Bhakti Shah
University of Chicago

Work done at Amazon Web Services.

verification guided development
Cedar uses a process called verification-guided development, to ensure the correctness of the authorization engine.
The authorizer and validator are modeled in Dafny, and using Dafny’s automated reasoning capabilities, a collection of
security properties are checked and proved. Via differential random testing (DRT), the production implementation in
Rust is checked for equivalence with the Dafny model. In Cedar, 25 bugs have been found through DRT, and 4 bugs
through failed proof attempts.

Cedar is an open source authorization policy language, developed at
Amazon Web Services (AWS). Cedar allows for controlled access to
resources via a simple and expressive syntax that supports different
authorization paradigms, such as attribute-based access control (ABAC)
and role-based access control (RBAC). Cedar policies define who (the
principal) can do what (the action) on what target (the resource) when
(the context). Policies have a specified effect: either permit or forbid.

CEDAR AN ALTERNATIVE VERIFICATION ENVIRONMENT
Dafny was chosen for its balance between usability and automation for
basic properties. However, meta-theoretic properties of Cedar have
proved less suitable for Dafny’s automation. The specification suffered
from poor proof performance and brittleness, where small changes to the
program, or minor updates to Dafny or Z3 caused verification timeouts.
Proof brittleness is a well known issue with SMT-based tools such as
Dafny. To ensure robust performance and minimal maintenance, highly
detailed proofs are better, and this favors the use of an interactive theorem
prover over an automated one. We port the Cedar formalization to the
interactive theorem prover Lean, and try to answer the question: Can
Lean be used for verifying a project at the scale of Cedar, with
performance and proof size metrics comparable to the existing
formalization in Dafny?

The Lean specification outperforms the Dafny specification — this can be
attributed to the use of type classes and higher order functions, as well as
Lean’s extensive standard library. Dafny proofs are mostly shorter than Lean
proofs — this was expected, and is attributed to Dafny’s ability to
automatically solve simple proof obligations via an SMT solver. Both
verification time and time per test request for Lean were significantly lower
than Dafny, which can be attributed to the difference in underlying compilers.
Overall, the Lean specification performs extremely well in all regards and is a
significant improvement especially with respect to the differential random
testing that Cedar relies on, as more tests can be run in the daily fixed period.

permit(principal in Group::"admins",
action in [Action::"create", Action::"delete"],
resource in Pages::"admin_pages")
unless(principal in Group::"blacklisted_admins");

This example policy permits a principal with the admins role to perform a
create or delete action on resources that have the admin_pages
role, unless the principal also has the blacklisted_admins role.
Cedar allows a user to define such a set of policies, and then make an
authorization request. The request is either allowed or denied, based on a
set of rules. Informally, an authorization request could be of the form “Is
Alex allowed to create the admin page Instructions?", which will be
allowed if and only if Alex is in the group admins and not in the group
blacklisted_admins.

Cedar is dynamically typed, and type-checking takes place during an optionally
run phase called validation.

def isAuthorized (req : Request) (entities : Entities) (policies : Policies) :
Response :=
let forbids := satisfiedPolicies .forbid policies req entities
let permits := satisfiedPolicies .permit policies req entities
if forbids.isEmpty && !permits.isEmpty
then { decision := .allow, policies := permits }
else { decision := .deny, policies := forbids }

LANGUAGE SPECIFICATION
The language specification is made up of the authorization and evaluation models. The authorization
model is quite simple: we collect the list of forbid and permit policies satisfied; if there is at least one
permit policy satisfied, and no forbid policies are satisfied, then the authorizer allows the request,
else it denies it.

A request is evaluated against each policy in the given policy set. Evaluation can return either true,
false, or error. Each constraint in the policy scope is an expression; members of the context also form
expressions. Unconstrained principal, action, or resource clauses evaluate to true.

MODEL DAFNY
LOC

LEAN
LOC %

Generic datatype definitions 0 246

Language model specification 1707 951 56%

Validation model specification 1189 532 45%

Total 2896 1729 60%

STATISTICS
verification

time

dafny (s) lean (s) %

519 185 36%

PROOFS DAFNY
LOC

LEAN
LOC %

Datatype proofs 0 681

Authorizer proofs 394 350 89%

Validator proofs 3110 4686 150%

Total 2896 1729 160%

drt: per
request

Lean
(µs)

Dafny
Java (µs)

abac 4 3325

abac-typed 5 3410

We prove the following theorems for the authorizer:
• If some forbid policy is satisfied, then the request is denied.
• A request is allowed if and only if it is explicitly permitted (i.e., there is at least one permit policy that is satisfied).
• Authorization produces the same result regardless of policy evaluation order or duplicates.

VALIDATION MODEL

AN ASIDE: MODELING SETS inductive Value where
…
| set (s : Set Value)
…

In the existing Dafny formalization, Cedar validation followed a slightly complex model
known as permissive validation. During the Lean formalization, we decided to change the
validation model to be stricter, by simplifying the type system quite a bit. The only non-
standard part of the type system is to do with booleans: when we are able to make certain
judgements, we type boolean values strongly with tt and ff representing the true and false
types, over and above the regular anyBool type which corresponds to the more familiar
boolean type.
inductive BoolType where
| anyBool
| tt
| ff
The subtyping relation is also simple. Records have width subtyping, but not depth
subtyping; tt <: anyBool & ff <: anyBool; every type is a subtype of itself.

Cedar makes heavy use of sets, and in Dafny, sets are axiomatized; in Lean, this is not the case. We have a type Value where set : Set Value -> Value, that is,
we have a constructor that takes in a set of values as a parameter. To define a quotient type representing sets on Value, we would need to define a function and a type in a
mutually recursive fashion, something that is not permitted in Lean. Hence, we had to settle on an alternative definition: a set is a wrapper around a list, but we only deal
with well-formed sets, that is, sets where the underlying list is sorted and duplicate free.

Dafny is a verification-aware
programming language. Dafny makes
use of automated reasoning, allowing
programmers to reason about their
code formally by making use of
specifications. Dafny discharges
proof obligations to an SMT solver,
Z3, allowing additional pre and post
conditions and assertions to assist the
solver.

extended abstractcode

Lean is a proof assistant and
f u n c t i o n a l p r o g r a m m i n g
language. Lean is an interactive
theorem prover, allowing users to
w r i t e p r o o f s v i a d i r e c t
construction or tactics, which are
then checked by the Lean kernel.
Lean’s type theory is based on the
c a l c u l u s o f i n d u c t i v e
constructions.

