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ABSTRACT

Reasoning about graphical languages in a proof assistant can be hard. Canonical diagrammatic

representations are optimized for readability, and may abstract away details irrelevant to a

pen-and-paper proof, but these details are often important to a proof assistant. We develop

a methodology for working with graphical languages associated with classes of categories,

and equip it with an automated visualizer integrated with the Coq proof assistant, enabling

diagrammatic reasoning. We instantiate this with the ZX-calculus, a language for quantum

computation, as an example of specialized diagrammatic reasoning.
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CHAPTER 1

INTRODUCTION

The question driving this thesis is: How do we reason about graphical languages

diagrammatically in an interactive proof assistant?. Let us look at the graphical

language of process diagrams associated with the semantics of process theories, adapted from

Coecke and Kissinger [3], as a motivating example.

A process refers to anything that has some non-negative number of inputs and outputs.

We represent a process as a box with wires representing the input and output systems. We

label wires with types. As an example, consider the simple function operating on integers.

f(x, y) = x+ y

This can be viewed as a process with two integer inputs and one integer output, and a

diagram of this process can be seen in Figure 1.1.

Figure 1.1: The process f(x, y) = x+ y

We can compose simple processes to form more complex processes, provided the required

input and output types match. For example, if we have the two processes in Figure 1.2a,

then they can be combined as in Figure 1.2b, but not Figure 1.2c.

Definition 1 (Process theory). A process theory consists of:

1. a collection T of system-types represented by wires,
1



(a) Two example processes.
(b) Valid composition
of processes.

(c) Invalid composi-
tion of processes.

Figure 1.2: Composing processes.

2. a collection P of processes represented by boxes, where for each process in P the input

types and output types are taken from T,

3. a means of "wiring processes together", that is, an operation that interprets a diagram

of processes in P as a process in P.

For the purpose of this example, we restrict ourselves to the process theory of functions,

where the system types are sets. Our processes are just functions in mathematics, as seen in

Figure 1.1. We can sequentially compose functions the usual way, using the ◦ operator. In the

process theory, since function composition is the action corresponding to process composition.

This is intuitively imposing an ordering on the occurrence of processes: A◦B means B occurs,

and then A occurs. We can also compose processes in parallel, essentially forming a pair of

processes, using the ⊗ operator. Parallel composition is represented using the ⊗ operator,

and diagrammatically, it corresponds to placing two processes next to one another, as in
2



Figure 1.3: Two equivalent processes.

Figure 2.9. Intuitively, this means executing two processes at the same time.

Process diagrams can be deformed without semantically changing, provided the order

of inputs and outputs remains consistent. For example, the diagrams in Figure 2.9 are

equivalent.

Standalone wires can be seen as boxes that “do nothing”: Figure 1.4a corresponds to the

identity function on integers. Attaching a wire to a process has no effect, as in Figure 1.4b:

it is equivalent to id ◦ f .

(a) A wire is a process. (b) A wire serves as the identity.

Figure 1.4: Wires.

We introduce process theories so we can propose the following:

3



Figure 1.5: The process p(f(g(a, b), h(i(c), x)), y)

• The simplicity of diagrams is not easy to translate into a purely textual

form. Consider the process p(f(g(a, b), h(i(c), x)), y). This is a nightmare to parse,

especially if one is trying to understand its structure. On the other hand, the process

diagram in Figure 1.5 is also a self contained definition, and is much easier to look at.

One can immediately tell the relation between nodes as inputs and outputs for one

another.

• A diagram may itself be a proof. Consider the statements (g1⊗g2)◦ (f1⊗f2) and

(g1 ◦ f1)⊗ (g2 ◦ f2). We can prove that these are equal algebraically using properties

of the operators that we have not introduced yet, but diagrammatically, the two are

identical: Figure 1.6 is the diagram for both statements. Thus, this diagram alone is a

proof of equality of two statements.

Now, we add in the additional constraint of working in a proof assistant. Specifically,

we consider the dependently typed proof assistant, Coq. Typically, this class of provers is

most powerful when used to reason about structure, and, with Coq being an interactive proof
4



Figure 1.6: The diagrammatic representation of both (g1⊗g2)◦(f1⊗f2) and (g1◦f1)⊗(g2◦f2)

assistant, we must reason about structure interactively. The main consequence of this is

having to explicitly deal with several intermediate states. Further, as we are working in a

formal system, steps that may be elided in pen-and-paper proofs must be explicitly addressed.

• We must reason about several intermediate states. Consider identity wires as

seen before. Figure 1.4b shows how adding identity wires does not change the diagram

semantically. However, the two are structurally different, and proving them equivalent

would involve an explicit rewrite. Two diagrams that are structurally different but

semantically identical can only be unified via a rewrite, and this must be done for every

individual structural difference. A proof assistant requires us to reason about each one

of these intermediate states, rather than the entire solution itself. One can see how

constructing such diagrams by hand can get cumbersome, especially with more complex

graphical structures, and we have already established that a textual representation is

not easy to work with.

• Canonical diagrammatic representations abstract over structural details.

Process diagrams are designed to abstract over information that does not alter the
5



Figure 1.7: h ◦ g ◦ f

semantics of the diagram: for example, adding identity wires. As another example,

consider Figure 5.3. While sequential composition is associative, this is not something

the proof assistant knows. h ◦ (g ◦ f) is structurally different from (h ◦ g) ◦ f , but our

diagrammatic syntax renders both in the same way. This is a problem: we want to

distinguish between these two states, as the proof assistant would require an explicit

proof of equivalence to transform one term to the other. We must come up with an

alternative diagrammatic notation such that two terms that differ structurally are

rendered distinctly.

If we wish to work with graphical structures in a proof assistant, we must do so diagram-

matically, but not using the canonical diagrammatic representation; we must reason about

several intermediate states, and doing so by hand is awkward, so an automated translation

from a textual term to a visual representation is ideal.

6



This thesis aims to solve this problem for a subset of graphical structures, ones that have

a semantics corresponding to a class of categories. Process diagrams are an example of such

a graphical structure, and hence we share the same motivations. Chapter 2 elaborates on

this further, Chapter 3 and Chapter 4 introduce the semantics of the systems we work in,

and Chapter 5 describes our approach to this problem. Finally, we go over related work and

future directions in Chapter 6 and Chapter 7 respectively.

7



CHAPTER 2

BACKGROUND

2.1 The Coq proof assistant

Formal verification aims to prove properties of a computer program, using a mathematical

specification. Proof assistants are software that allow for a computer aided process of

formal verification. Dependently typed proof assistants utilize the Curry-Howard-Lambek

isomorphism [5, 10, 15] to essentially allow the user to construct programs as proofs.

Coq [4] is a widely used dependently typed proof assistant, which uses tactics to rewrite

proof terms. Rather than explicitly constructing proof terms, the user must apply rewrite

rules to transform the proof obligation, until it is reduced to something that can be proved

trivially.

2.1.1 coq-lsp

coq-lsp [6] is a language server for the Coq proof assistant, along with a client side extension

implementation. The server itself extends the language server protocol with functionality

specific to proof assistants, allowing for easier integration of external IDE tools. coq-lsp

is also designed with incrementality in mind, and computations are scheduled to ensure

maximum efficiency.

2.2 Category Theory

Category theory is a powerful, unifying framework in mathematics and beyond, allowing

for the simplification of complex systems via identification of common structural properties.

We iteratively define the classes of categories up to the symmetric monoidal level. We also

connect these definitions back to process theories, as we construct string diagrams using

8



elements corresponding to categorical constructs.

The following definitions are adapted from Mac Lane [17], Joyal and Street [12], Selinger [21],

and Pierce [20].

Definition 2 (Category). A category C comprises:

1. A collection of objects;

2. A collection of arrows (or morphisms);

3. Operations assigning to each arrow f an object domf , its domain, and an object codf ,

its codomain, writing f : A → B when domf = A and codf = B;

4. A composition operator assigning to each pair of arrows f and g such that codf = domg,

a composite arrow g ◦ f : domf → codg, satisfying the following associative law:

∀ f : A → B, g : B → C, h : C → D,

h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

5. for each object A, an identity arrow idA : A → A satisfying the following identity law:

∀f : A → B,

idB ◦ f = f and f ◦ idA = f.

A vanilla category corresponds to a basic process theory, an object is a wire, a morphism

is a box, an identity morphism is the identity wire, and morphism composition corresponds

to process composition. The diagrammatic forms of each construct can be seen in Figure 2.1.

Definition 3 (Monoidal Category). A category C is monoidal if it consists of:

9



Figure 2.1: The process theory associated with categories.

1. A bifunctor ⊗ : C × C → C, which means:

idA ⊗ idB = idA⊗B

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g)

2. An object e ∈ C called the unit object,

3. Natural isomorphisms:

α = αA,B,C : (A⊗B)⊗ C ≃ A⊗ (B ⊗ C)

λ = λA : I ⊗ A ≃ A

ρ = ρA : A⊗ I ≃ A

such that ∀ A,B,C,D ∈ C, the diagrams in Figure 2.2 commute.

A monoidal category adds the diagrammatic constructs in Figure 2.3 to Figure 2.1.

10



(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

((A⊗B)⊗ C)⊗D

(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D))

αA,B,C ⊗ idD

αA⊗B,C,D

αA,B⊗C,D

idA ⊗ αB,C,D

αA,B,C⊗D

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA ⊗ idB idA ⊗ λB

Figure 2.2: The pentagon and triangle coherence axioms.

Definition 4 (Braiding). A braiding for a monoidal category C consists of a natural family

of isomorphisms

c = cA,B : A⊗B ≃ B ⊗ A

such that ∀ A,B,C ∈ C, the diagrams in Figure 2.4 commute.

Definition 5 (Braided Monoidal Category). A braided monoidal category is a pair (C, c)

consisting of a monoidal category C and a braiding c.

Definition 6 (Symmetric Monoidal Category). A symmetric monoidal category is a

braided monoidal category with a self-inverse braiding, that is

cA,B = c−1
B,A.

A symmetric monoidal category adds the diagrammatic constructs in Figure 2.5 to

Figure 2.3.

11



Figure 2.3: Additional diagrammatic constructs for monoidal categories as processes.

Definition 7 (Dagger Category). A dagger category is a category C such that for every

morphism f : A → B there is an associated morphism f† : B → A, known as the adjoint of

f , such that ∀f : A → B , g : B → C:

id
†
A = idA : A → A,

(g ◦ f)† = f† ◦ g† : C → A,

f†† = f : A → B.

A dagger category simply represents the adjoint of a diagram by annotating it with an

adjoint symbol (†).

Definition 8 (Exact Pairing). In a monoidal category, an exact pairing between two objects

A and B is given by a pair of morphisms η : I → B ⊗ A and ϵ : A⊗ B → I, such that the

adjunction triangles in Figure 2.6 commute. η and ϵ are known as the unit and the counit of

the adjunction respectively. In such an exact pairing, B is called the right dual of A and A is

called the left dual of B.

Definition 9 (Left Autonomous Category). A monoidal category is left autonomous if every

12



(A⊗B)⊗ C

(B ⊗ A)⊗ C B ⊗ (A⊗ C)

B ⊗ (C ⊗ A)

A⊗ (B ⊗ C) (B ⊗ C)⊗ A

cA,B ⊗ idC

αB,A,C

idB ⊗ cA,C

αA,B,C

cA,B⊗C

αB,C,A

(A⊗B)⊗ C

(B ⊗ A)⊗ C B ⊗ (A⊗ C)

B ⊗ (C ⊗ A)

A⊗ (B ⊗ C) (B ⊗ C)⊗ A

c−1
B,A ⊗ idC

αB,A,C

idB ⊗ c−1
C,A

αA,B,C

c−1
B⊗C,A

αB,C,A

Figure 2.4: The hexagon coherence axioms.

object has a left dual.

Definition 10 (Right Autonomous Category). A monoidal category is right autonomous if

every object has a right dual.

Definition 11 (Autonomous Category). A monoidal category is autonomous if it is both left

and right autonomous.

Autonomous categories add the diagrammatic constructs in Figure 2.7 to Figure 2.5.

Figure 2.5: Additional diagrammatic construct for symmetric monoidal categories as processes.
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A
idA ⊗ ν

A⊗B ⊗ A

A

ϵ⊗ idA

idA

B
ν ⊗ idB

B ⊗ A⊗B

B

idB ⊗ ϵ

idB

Figure 2.6: Adjunction triangles for exact pairings.

Figure 2.7: Additional diagrammatic constructs for autonomous categories as processes.

Definition 12 (Compact Closed Category). A compact closed category is a right autonomous

symmetric monoidal category.

Compact closed categories simply add symmetry to the diagrammatic constructs in

Figure 2.7.

2.3 ZX-calculus

The ZX-calculus [2] is a complete set of rewrite rules for the manipulation of ZX-diagrams,

a graphical representation of quantum operations. ZX-diagrams are graphs that consist of
14



green and red nodes, known as Z and X spiders respectively, with n inputs and m outputs,

along with a rotation angle α ∈ [0, 2π). Figure 2.8 is the diagrammatic representation of

these spiders.

We briefly present the features and rules making up the ZX-calculus, drawing heavily

from van de Wetering [25].

2.3.1 Meta-Rules

Colorswapping A color-swapped ZX-diagram is exactly what it sounds like: structurally

identical, but replacing every instance of a Z spider with an X spider and vice versa. Any

rules transforming zx1 to zx2 can also be applied to the color-swapped zx1, transforming it

to a color-swapped zx2. Thus, any rules presented apply for their color-swapped versions too.

Only connectivity matters An important meta-rule in the ZX-calculus is only connectivity

matters (OCM). Arbitrary wire transforms do not alter the diagram’s meaning, if the overall

input and output orders are maintained.This rule is very powerful as it allows us to move

diagrams into the most convenient form to apply rules to. We show an example of OCM

deformations in Figure 2.9.

2.3.2 Rewrite Rules

An important ZX-calculus rule is the spider fusion rule, which allows spiders connected by

a non-zero number of edges to be fused into a single spider, with the rotation angle of the

α
...

...n m

(a) Z-spider

α
...

...n m

(b) X-spider

Figure 2.8: Canonical ZX spiders

15



=

Figure 2.9: Only connectivity matters: Two equal ZX-diagrams, where only connections and
qubit order are maintained.

α
. ..

α
. ...

∝

(a) The self-loop removal rule.

∝

(b) The bialgebra rule.

∝

(c) The Hopf rule.

α
.....

.

π

π

ππ

π

π

α
.....

. ∝

(d) The bi-π rule.

cπ
...

∝

cπ

cπ

cπ

...

(e) The state copy rule.

α

β

.

..

...

.. ..

∝ α+ β

..

..

..

..

(f) The spider fusion rule.

Figure 2.10: Rules of the ZX-calculus, where α, β ∈ R, c ∈ N

fused spider being equal to the sum of the rotation angles of the original spiders. This rule is

shown in Figure 2.10f. The reverse direction is also true: any spider can be split into two

spiders, provided the new spiders have rotation angles that sum up to original angle. With

the spider fusion rule, we can manipulate the number of inputs and outputs for all other

rules by adding a fuseable node to said input or output.

Another simplification is that we can remove self-loops as shown in Figure 2.10a [25].

Intuitively, this rule says that a node cannot provide more information about itself.

The bialgebra rule (Figure 2.10b), while not intuitive, is crucial for many ZX proofs, as it

16



allows for the rearranging of edges between nodes and the introduction or removal of swaps.

The Hopf rule, shown in Figure 2.10c, allows us to disconnect specific nodes in the diagram

instead of changing their connection.

For any X spider, it is equivalent to itself with Z spiders on each edge, where each Z

spider has a π rotational angle. Figure 2.10d shows this rule.

The state copy rule (Figure 2.10e) allows an X spider to copy arity-1 Z spiders.

2.3.3 Representing Unitary Gates

π

Z

π

X Y

π π α

Rz(α) CNOT HT

π
4

Figure 2.11: Common gates represented in the ZX-calculus.

We translate some standard unitary gates from the quantum circuit model into ZX-calculus

in Figure 2.11. Z, T, and and Rz(α) represent Z-axis rotations by the given angles, while X

and Y rotate qubits by π around the X and Y axes. H switches between the Z and X bases;

following van de Wetering [25] it can be decomposed into a sequence of red and green nodes.

Finally, CNOT applies an X rotation (or “NOT”) on the second qubit contingent on the first

being 1. Note that OCM counterintuitively tells us that we can slide the green “controlling

node” past the red “NOT” without changing the semantics of the diagram.

Having translations from gates into ZX allows us to convert quantum circuits to diagrams.

Once we translate circuits into diagrams, we can use the ZX-calculus rules without being

bound by the circuit model’s rigid structure. Note that the gates shown in Figure 2.11 form

the RzQ gate set [18], a complete gate set for quantum computing.

The ZX-calculus has semantics rooted in complex matrices, but its purpose is to facilitate

diagrammatic reasoning – as such, once one is convinced the semantics are sound and complete,

the ZX-calculus can be independently used to reason about quantum operations, without

17



referring to the linear algebraic interpretation at all. For this reason, we do not go into the

denotational semantics of the calculus at all, and instead focus on the diagrammatic language

itself.
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CHAPTER 3

VYZX

VyZX [16] is a project to Verify the ZX-calculus, in the proof assistant Coq. VyZX has the

expected denotational semantics attributed to symmetric monoidal categories using matrices,

but these exist only for verification purposes – reasoning about terms in VyZX can be done

purely using the diagrammatic rewrite rules of the ZX-calculus.

Eliding the technical details of VyZX, we present the concrete syntax of the library, as

well as the major design choices that are relevant to the visualization, in Figure 3.1. We

use a dependent type to represent a ZX object, parameterized by its input and output arity.

We define Z and X spiders in the expected manner, and also define explicit constructors

for Cap, Cup. Wire, Box, Swap, and Empty for convenience, though we note that they can be

defined in terms of Z and X spiders. We define sequential and parallel composition, Stack

and Compose, which enforce semantic well-formedness via the dependently typed structure

ensuring input and output arity constraints are met. These form parametric morphisms [23],

allowing us to define the equivalence relation for proportionality:

∀(zx0, zx1 : ZX n m), zx0 ∝ zx1 := ∃c ∈ C, Jzx0K = c · Jzx1K ∧ c ̸= 0

while ensuring safe rewrites. We need a notion of proportionality to reason about semantic

equality, as two semantically equivalent terms may not be structurally equal, and equality

only reflects structural equality.
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in out : N α : R

Z in out α : ZX in out Cap : ZX 0 2 Cup : ZX 2 0

in out : N α : R

X in out α : ZX in out

Wire : ZX 1 1 Box : ZX 1 1 Swap : ZX 2 2 Empty : ZX 0 0

zx0 : ZX in mid zx1 : ZX mid out

Compose zx0 zx1 : ZX in out

zx0 : ZX in0 out0 zx1 : ZX in1 out1

Stack zx0 zx1 : ZX (in0 + in1) (out0 + out1)

Figure 3.1: Inductive constructors for ZX-diagrams in VyZX

The ZX-calculus forms a dagger compact category (symmetric monoidal + autonomous

+ dagger category). We map categorical concepts to inductive constructors in VyZX in

Table 3.1.

Categorical Concept Inductive Constructor Symbol

idA Wire −

I Empty ∅

◦ Compose ↔

⊗ Stack ↕

Symmetric braid Swap 1 1 ×

Unit Cap ⊂

Co-unit Cup ⊃

Table 3.1: Translating categorical concepts to inductive constructors with their respective
symbolic notation.
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CHAPTER 4

VICAR

ViCAR [22] is a framework for reasoning about (monoidal) categories in Coq. ViCAR uses a

nested hierarchy of typeclasses to define several classes of categories, which can be instantiated

by user-defined types. ViCAR aims to use category theory as a generalization technique

in formal verification, allowing for the identification of common structural patterns within

conceptually diverse topics, and enabling reuse between different instantiations with the same

structure. It also provides a set of expressive automated tactics, allowing for repetitive but

mundane patterns to be solved trivially.

ViCAR aims to build up typeclasses for the categories seen in Figure 4.1. Objects of

a category have the type of the category itself, and morphisms are parameterized by their

object arguments. ViCAR takes advantage of Coq’s type inference mechanism [24], allowing

for automated unification. For example, suppose an instance catC of our category typeclass

has been declared whose objects have type C. Then, if A, B and M are terms of type C and f

and g have types A → B and B → M, Coq would be able to automatically infer the type of

f ◦ g without the user having to explicitly point to the particular instance. ViCAR also

separates structure from coherence. Categorical structures are specified by typeclasses with

only structural properties, and coherence conditions exist in a separate typeclass. This allows

users to use the visualizer without formally specifying coherence conditions, which is a harder

task. ViCAR supplies a number of automation tactics, including but not limited to foliation,

simplification, and rewriting.
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Figure 4.1: ViCAR hierarchy of category classes.
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CHAPTER 5

VISUALIZATION

The visualizer for ViCAR (VizCAR) can be seen as a generalization of the visualizer for

VyZX (ViZX). Rather than providing a chronological account of the design decisions made,

we go through the features common to both visualizers first, and then highlight the added

features of the VyZX visualizer.

5.1 Visualization workflow

The visualization workflow can roughly be divided into five stages. First, the input term

is lexed and parsed, using a combinator based library. The parser is customized to work

with notation commonly used in VyZX and ViCAR. This allows for arbitrary proof states

produced by Coq to be parsed. A map from variables to types is created based on hypothesis

information that is also parsed. Next, the parsed term and all nested sub-terms are assigned

graphical objects based on the structure of the term. These objects are assigned sizes and

coordinates on an HTML canvas of size defined by the user-specified scale. The term is

then rendered using those coordinates, and additional visual components including text and

color are added. Finally, this canvas is displayed as a webview in the VSCode user interface,

rendered as a panel alongside the code and goals.

It is worth understanding the high level workflow of how the visualizers link with coq-lsp

(Figure 5.1). On a change in the user’s cursor position, the coq-lsp extension client requests

updated goals from the server. The server sends back the updated goals, and the client renders

them in the user-facing goal panel. In the case of VizCAR, the proof context is also parsed,

enhancing the visualizer with type information so that the textual goal can be annotated

when necessary. This allows for arbitrary morphisms to be rendered with their input and

output objects, which are only present in the typing information and not the surface term
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Figure 5.1: Automated visualization workflow.

Figure 5.2: User’s proof-writing IDE state.

itself. This simple workflow is ideal for a visualizer to fit into. When the server sends back

updated goals to the coq-lsp client, one copy of these goals is sent to the goal panel, while

another is sent to the visualizer to render an updated diagram. The server continues listening

for cursor movements from the user, and hence new goal states are rendered automatically.

Thus, the visualizer is silently integrated into the user’s proof workflow (Figure 5.1).

The visualizer is intended as an addition to the textual goal state, rather than a replace-

ment: the ideal IDE setup can be seen in Figure 5.2. As the goal is visualized alongside its

textual representation, the proof engineer can map visual components to textual components,

allowing for her to choose the correct textual rewriting tactics.

5.2 Diagrammatic grammar

For the sake of completeness, we provide a full diagrammatic grammar for the two visualizers.

All diagrams in this section are images directly generated by the visualizers.
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5.2.1 ViZX

The individual elements of the ViZX grammar are shown in Figure 5.8. Since the visualizer

is intended to be used in the context of a Coq proof, there are no semantic checks enforced,

just static ones: any term that fits the defined grammar may be visualized, even if it does not

fit the conditions defined in Figure 3.1: for example, something like Z 1 1 α ↔ Z 4 1 α may

be rendered, despite the output arity of the first spider not being equal to the input arity of

the second spider, as is required in the semantics in Figure 3.1. Specific "transforms", such

as the colorswap (⊙), adjoint (†), etc. are rendered the same as arbitrary functions applied

to diagrams.

The individual elements may seem simple enough, but their utility is best seen in more

complex diagrams combining several elements.

Let us look at our motivating example regarding associativity. We want (A ↔ B) ↔ C

to be rendered distinctly from A ↔ (B ↔ C). Figure 5.3 shows the rendering of both terms

distinctly, and the explicit associative structure is clear.

(a) (A ↔ B) ↔ C (b) A ↔ (B ↔ C)

Figure 5.3: Explicit associativity in ViZX.

Another important difference is the use of foliations to highlight structure. A foliation

is a composition of ”stacks,“ each of which is the tensor of identity morphisms and a single

non-identity morphism. Any morphism in a symmetric monoidal category can be represented

as a foliation [9]. ViZX diagrams are essentially foliations of string diagrams, with identities,
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units, and counits represented as explicit nodes. This follows quite naturally from the

inductive definition of ZX-diagrams in VyZX, and importantly, aids in reasoning about

graphical structures inductively. We see in Figure 5.4 the explicit nodes allocated to wires and

caps, rather then them just being implicit tools for connection. Figure 5.5 shows an example

of the visualizer’s representation compared to the canonical diagrammatic representation

presented earlier.

Figure 5.4: An example of explicit structure.

26



Figure 5.5: The yanking rule in ViZX and canonically.

Proofs in VyZX reason about proportionality. We use ∝ as the primary constructor for

diagrammatic proof: most proofs aim to establish the equivalence of two ZX-diagrams, and

this can be done by proving the two are proportional. A statement of proportionality is

essentially what must be proved (5.6a), which must be reduced to a reflexive statement that

can be discharged trivially (5.6b).
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(a) Proportionality of two diagrams. (b) Final, reflexive proof obligation

Figure 5.6: The initial and final state of a proof.

For ease of structural visibility, we manipulate the scale of stacked and composed diagrams:

stacked components have the same width, while composed components have the same height.

This can be seen in Figure 5.6b.
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J Empty K = J Wire K =

J Box K = J Cup K =

J Swap K = J Cap K =

J Z n m α K = J X n m α K =

J n_wire n K =

J $ n’,

m’ :::

Z n m α

$ K

=

Figure 5.7: Diagrammatic grammar for ViZX
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J A ↕ B K =

J A ↔ B K =

J A ∝ B K =

J n ⇑ A K =
J f Z 1 1

α K
=

Figure 5.8: Diagrammatic grammar for ViZX (cont.)

To show an example of structural editing within VyZX, we prove the correctness of

the bell state preparation circuit. First, we transform the standard Bell pair circuit into a

ZX-diagram by translating gates as shown in Section 2.3.3. Figure 5.9a shows the outcome

of this translation: The two X spiders on the left prepare qubits in the |0⟩ state, which

is followed by a Hadamard and CNOT gate. We start the proof by reassociating to use

bi-Hadamard color-swapping on the top wire in Figure 5.9b. After that, we reassociate

(see Figure 5.9c) and fuse the two Z spiders in Figure 5.9d. The next step is to reassociate

(Figure 5.9e) and to fuse the X spiders in Figure 5.9f. Lastly, in Figure 5.9g, we simplify the

resulting diagram and then convert the spider into a cap in Figure 5.9h.
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(a) bell_state_prep_correct lemma

(b) Reassociate and color-swap top-left node

Figure 5.9: Proof of the correctness of bell state preparation in VyZX.
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(c) Reassociate for fusion

(d) Fuse top-left spiders

Figure 5.9: Proof of the correctness of bell state preparation in VyZX. (cont.)
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(e) Add auxiliary wires and reassociate

(f) Fuse bottom-right spiders

Figure 5.9: Proof of the correctness of bell state preparation in VyZX. (cont.)
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(g) Remove auxiliary wires and trivial
spider (h) Convert equivalent spider into cap

Figure 5.9: Proof of the correctness of bell state preparation in VyZX. (cont.)

5.2.2 VizCaR

VizCAR has constructors that are similar to ViZX structurally, defined in Figure 5.12. The

main differences lie in the generalization. Since VizCAR can visualize any arbitrary structure

as long as it instantiates one of the category classes in its domain, it does not have features

such as colors associated with specific constructors. VizCAR also reasons about categorical

structures more complex than VyZX, and additional constructs are defined. We also have the

notion of isomorphisms, which are visualized distinctly from unidirectional morphisms via

higher line weights. We also visualize unitors and associators with the relevant parametric

information.

VizCAR has the same advantages as ViZX when it comes to diagrammatic design choices

and readability, so we will not repeat them here; instead we direct the reader to Figure 5.10

and Figure 5.11 as examples of composite diagrams.
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Figure 5.10: The inverse braiding lemma.

Figure 5.11: A composite VizCAR diagram.
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J β_ A, B K = J f−1 K =

J f : A ∼>
B K

= J f : A
<∼> B K

=

J id_ A K = J λ_ A K =

J ρ_ A K = J α_ A, B,
M K

=

J A ◦ B K =

J A ⊗ B K =

J A ≃ B K =

Figure 5.12: Diagrammatic grammar for VizCAR. Note that typing information is not present
in terms, but in the context. 36



CHAPTER 6

RELATED WORK

There is a whole field of study dedicated to data and program visualization; we choose to

specifically focus on works in proof visualization.

Proof assistants utilizing visualization are popular. There are examples of primarily visual

proof assistants [11], but our domain corresponds more closely to primarily textual proof

assistants with graphical components [1]. The proof assistant Lean [7] is equipped with a

customizable, extensible user interface, ProofWidgets [19], effectively allowing users to define

interactive graphical components that incorporate with the proof engineering workflow. Since

this is a completely generalized framework, applicable to pretty much any user defined types

with no semantic constraints, users are able to have highly customizable visualizations, at

the cost of more precise specifications.

Kissinger [13] developed Chyp, an interactive theorem prover for symmetric monoidal

categories with string diagram visualizations. Chyp allows users to define axiomatic rewrite

rules and generators, which can then be visualized using the canonical diagrammatic grammar

for process theories. Since Chyp utilizes axiomatization, it is able to unify equivalence with

equality – terms that are semantically equivalent are automatically treated as equal. This

allows Chyp to utilize the familiar conventional string diagram format for visualization,

rendering two semantically equivalent terms in the same, abstract representation – eliding the

actual structural information from the visualization. Since VyZX and ViCAR are defined in

Coq, semantic equivalence can only be transformed to equality via an explicit rewrite rule,

and hence the structural information is an important part of our visualization.

Lafont [14] develops a diagram editor for reasoning about category theory in Coq, providing

a bidirectional interface for reasoning about categories in Coq’s UniMath library. This editor

allows for categorical proof reasoning in a manner almost identical to pen-and-paper proofs.

While this editor and the UniMath development aim to aid reasoning about pure category
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theory itself, our use case is reasoning about instantiations of categories, and the two make

different design decisions; for instance, our diagrams choose to highlight overall structure.
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CHAPTER 7

FUTURE WORK

There are two main directions we would like to explore within the realm of visualizing

graphical structures in interactive theorem provers – allowing for user-specified visualization

properties, and allowing users to interact directly with the visualizations. We elaborate on

both below.

7.1 Customizable visualization

Though ViZX was developed before VizCAR, ViZX is an instantiation of the more general

categorical block structure visualization. While the two visualizers function independently,

they share a lot of structure, and one may wish to extend this common structure to other

instantiations of categorical structures, especially with additional visual features such as colors

in ViZX. The current setup would involve creating a new visualizer for each instantiation,

which is not scaleable or the best option. We are exploring the use of a customizable visualizer,

where the user can specify properties of their desired visualizations through a configuration

file that the visualizer can parse. While the goal is not to get to a fully featured widget

library like Nawrocki et al. [19], it is to allow users to add custom visualization directives for

simple constructs such as color, size, textual mappings, etc. THis would also allow for ViZX

to be an instance of VizCAR, rather than the two being entirely independent.

7.2 Interactive visualization

Another future direction is exploring an interactive visualizer, where purely graphical rewriting

is an option. We envision a system that follows the work of Donato et al. [8] where the process

of writing proofs can be done without the user having to interact with the textual level. This

approach raises questions about whether we would want to keep the textual representation
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alongside the graphical one as we do now, establishing a bidirectional editing system, or if we

would want to get rid of textual reasoning entirely, enabling pure diagrammatic reasoning.
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CHAPTER 8

CONCLUSION

We develop a methodology for the visualization of diagrams of categorical structures, with

an instantiation for the ZX-calculus. This visualization grammar is specialized for interactive

proof assistants, where contextual typing information may be helpful, and where we must deal

with several verbose intermediate stages. Through integration with the Coq proof assistant,

we enable automated visualization of all valid proof states, and by conveying structural

properties explicitly, we allow for easier identification of patterns by the proof engineer.
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