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How do we reason about graphical 
languages diagrammatically in a proof 

assistant?

The interactive theorem prover, Coq.



???
What is a string diagram? What is a category? What is an interactive 

theorem prover? What is that diagram? 



A simpler setting



A simpler setting
Process theories

• Process = a box that takes some number of inputs, and produces some number of outputs.


• Types = each input and output is represented by a wire, that has a specified type.`

x ∈ ℕ
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Process theory

• A process theory is:


• T: a collection of types,


• P: a collection of processes using input and output types from T,


• An operation that can map a diagram of processes in P to a singular process in P.


• We also have identity wires, which are just boxes that “do nothing”.


• Process theories are graphical languages.



Process theory
Specifically, functions.

• The process theory of functions:


• T: [ ℕ … ],


• P: the set of all functions on types in T.


• The (associative) function composition operator ∘, combining two functions in P to  
form a unique function in P.


• The identity wires are just identity functions for every term of types in T.
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Process theory
Specifically, functions.

• The process theory of functions:


• T: [ ℕ … ],


• P: the set of all functions on types in T.


• The (associative) function composition operator ∘, combining two functions in P to  
form a unique function in P.


• The identity wires are just identity functions for every term of types in T.


• The cartesian product operator ⊗, forming a pair of functions or inputs.
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The stage is set.



Diagrams >>> Text.



Which one is 
better?

 p(f(g(n1, n2), h(i(n3), n4)), n5)
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Diagrams can be proofs.



Diagrammatically equivalent.

Textually distinct,

• (g1 ◦ f1) ⊗ (g2 ◦ f2)


• (g1 ⊗ g2) ◦ (f1 ⊗ f2)
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Inside a proof assistant



Proof assistants

• Prove properties of a program, using a mathematical specification.


• Dependently-typed proof assistants utilize the Curry-Howard-Lambek Isomorphism to 
construct programs as proofs.


• Reason about structure using induction and recursion.



Proof assistants
Coq

• Interactive, dependently-typed proof assistant.


• Reason about structure interactively.



Several intermediate stages



Intermediate stages

• Identity wires do not change the 
diagram semantically, but they do 
structurally.


• In an interactive proof assistant, 
structure matters.

f f f



Canonical diagrams employ 
structural abstractions.



The proof assistant cares.

Structural abstractions

• f ◦ (g ◦ h) = (f ◦ g) ◦ h


• Proof assistant needs explicit 
associative information.


• Diagram insufficient!

g

h

f

g

h

f

g

h

f



What do we have so far?

• The simplicity of diagrams is not easy to translate into a purely textual form.


• A diagram may itself be a proof.


• We must reason about several intermediate stages. 


• Canonical diagrammatic representations abstract over structural details. 



To work with a graphical language in a proof assistant:

• We must do so graphically,


• But using a diagrammatic representation that is more verbose than the canonical one;


• We have several intermediate stages, 


• Hence automated diagrammatic generation is desirable.



How do we reason about graphical 
languages diagrammatically in a proof 

assistant?

String diagrams associated with a class of categories.



Process theory → Category theory
… What is category theory? 

• Simplify complex systems via identification of common patterns,


• In our case, structural properties. 


• To understand how it helps, we do need to know what it is.



Category
The big bad definition.

• A category C comprises:


• A collection of objects, represented A,B,C…


• A collection of arrows (or morphisms) from objects to objects, represented f,g,h….


• Operations assigning a domain and a codomain for every arrow f, such that if f has domain A 
and codomain B, we write f : A → B, 


• A composition operator ∘ such that for every pair of arrows f : A → B, g : B → C, there exists a 
composite arrow g ∘ f : A → C, satisfying an associative law h ∘ (g ∘ f) = (h ∘ g) ∘ f,


• For every object A, an identity arrow idA : A → A, such that ∀ f : A → B, idB  ∘ f = f and f ∘ idA = f.



Sounds … familiar?



Sounds … familiar?
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The process theory we’ve seen so far forms a category.



Process ↔ Category

Process Category

Wire Object

Box Arrow / Morphism

Identity wire Identity arrow

Process Composition Morphism Composition



Process ↔ Category

Process Category

Wire Object

Box Arrow / Morphism

Identity wire Identity arrow

Process Composition Morphism Composition

A



Process ↔ Category

Process Category

Wire Object

Box Arrow / Morphism

Identity wire Identity arrow

Process Composition Morphism Composition

A

f

B



Process ↔ Category

Process Category

Wire Object

Box Arrow / Morphism

Identity wire Identity arrow

Process Composition Morphism Composition

A

A



Process ↔ Category

Process Category

Wire Object

Box Arrow / Morphism

Identity wire Identity arrow

Process Composition Morphism Composition
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Add in ⊗, and we have … a 
monoidal category.



Monoidal Category

• A category C is monoidal if it consists of:


• A bifunctor ⊗ : C × C → C, meaning: 
idA ⊗ idB = idA⊗B  
(f’′ ⊗ g’′) ◦ (f ⊗ g) = (f'′ ◦ f) ⊗ (g’′ ◦ g),


• An object e ∈ C called the unit object ,


• Natural isomorphisms: 
α = αA,B,C : (A ⊗ B) ⊗ C ≃ A ⊗ (B ⊗ C) 
λ = λA : I ⊗ A ≃ A 
ρ = ρA : A ⊗ I ≃ A

Such that ∀ A, B, C, D, E, the diagrams below 
commute:
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Diagrams >>> definitions 



Operating on both objects and categories.

We add ⊗ 

f g

A C

B D

A B

f ⊗ g A ⊗ B 

We also add a unit object
Whose diagrammatic representation is just empty.

We now have processes with 
multiple inputs and outputs, with 
categorical semantics. 

f

A B C

D E

How does this impact structure? 
We’ll see :) 



We can keep going…

Categorical hierarchy…

• As we go to more complex classes, we 
add more structure.


• We could be here forever if we went 
through all of these …



We can keep going…

Categorical hierarchy…

• As we go to more complex classes, we 
add more structure.


• We could be here forever if we went 
through all of these …


• So let’s not do that.



ViCAR



ViCAR
Visualizing Categories with Automated Rewriting

• Framework for reasoning about (monoidal) categories in Coq.


• Specifically, these classes.



Why do we care?
Visualizing Categories with Automated Rewriting

• Several commonly encountered constructs can be instantiated with categorical semantics.


• For example, matrices, relations, simply-typed lambda calculus …


• Verification methodologies may coincide due to structural similarities.


• We want to take advantage of shared structure so categorical properties can be utilized in 
proof.



ViCAR
Visualizing Categories with Automated Rewriting

• Constructively defined categorical typeclasses, making use of Coq’s inference.


• Certain uninteresting patterns emerge when dealing with proofs in Coq.


• We want these to be handled using automation.


• ViCAR provides automation tactics for several commonly encountered situations. 



ViCAR
Visualizing Categories with Automated Rewriting

f ⊗ g

f ∘ g

idA

f ≃ g



ViCAR
Visualizing Categories with Automated Rewriting

(idA ∘ f) ∘ idB ≃ f



ViCAR
Visualizing Categories with Automated Rewriting

(A ⊗ C) × (B ⊗ D) ≃ (A × B) ⊗ (C × D)



Categories get more complex.



Braided Monoidal Category

• A braiding on a monoidal category consists 
of a natural family of isomorphisms,  
 
cA,B : A ⊗ B ≃ B ⊗ A 
 
such that the diagrams on the left 
commute. 



Braided Monoidal Category

Braiding cA,B
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Symmetric Monoidal Category
• A symmetric monoidal category is a braided monoidal category with a self-inverse braiding, 

i.e. cA,B = c-1B,A,
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Autonomous Category

Every object has a dual, A* 

A
UnitCounit

A A

AA
A

A A

A

A ⊗ A* → I I → A ⊗ A*

A ⊗ A* → I I → A* ⊗ A



Compact Closed Category
Symmetric Monoidal + Autonomous

Every object has a dual, A* 

A

A A

AA
Counit Unit



The ZX-calculus



The ZX-calculus

• A complete set of rewrite rules for the manipulation of ZX-diagrams, which are a graphical 
representation for quantum operations. 


• Consists of red and green nodes known as spiders.


• A purely diagrammatic language with semantics corresponding 
to complex matrices.



The ZX-calculus

• A complete set of rewrite rules for the manipulation of ZX-diagrams, which are a graphical 
representation for quantum operations. 


• Consists of red and green nodes known as spiders.


• A purely diagrammatic language with semantics corresponding 
to complex matrices.


• The ZX-calculus forms a dagger compact category.

Symmetric monoidal + autonomous + dagger.



VyZX



VyZX
Verify the ZX Calculus

• A Coq formalization of the ZX-calculus.


• Uses inductive constructors for ZX-diagrams.

Categorical 
Concept

Inductive 
Constructor Symbol

idA Wire −

I Empty ∅

◦ Compose ↔

⊗ Stack ↕

Symmetric 
braid Swap 1 1 ×

Unit Cap ⊂

Counit Cup ⊃



Proof assistant shenanigans
Cast

• Dependently typed terms 


• The type ZX 1 2 is not automatically equal to the type ZX 1 (1 + 1).

cast (n m : ℕ) {n' m' : ℕ} (prfn : n = n') (prfm : m = m') (zx : ZX n' m') : ZX n m.



VyZX
Basic constructors

Empty Wire Cup CapSwap

Green spider Red spider Cast



VyZX
More constructors

Stack (⊗)

Compose (◦)Proportionality

Function / transformn wires stackedn stack, general



More structure, more explicitly
Foliation

A

=



Visualization Workflow



Workflow
Using coq-lsp



Related Work



ProofWidgets
Nawrocki et al.



Chyp
Kissinger et al.



Future Work



Customizable visualization
ViZX++

• ZX-calculus visualizer = specialized, distinct implementation,


• Intractable method for future instantiations.


• User-specified custom directives for a set of structural constructs. 



Interactive visualization

• Diagrammatic rewriting, graphically


• Bidirectional text/graphic system



Conclusion



Conclusion
Proof Visualization for Graphical Structures

• A methodology for working with graphical constructs in a proof assistant,


• An implementation of visualizations for the graphical language of string diagrams 
associated with classes of categories,


• An instantiation for the ZX-calculus, a symmetric monodical autonomous category,


• An integration with the proof assistant Coq.


