Proof Visualization for
Graphical Structures

Bhakti Shah; May 17 2024, CS Master’s Thesis Presentation
Committee: Stuart Kurtz, Robert Rand (Advisor), John Reppy

How do we reason about graphical
languages diagrammatically in a proot
assistant?

graphical
languages

graphical
languages

String diagrams associated with a class of categories.

diagrammatically

diagrammatically

Proofl
assistant”?

Proofl
assistant”?

The interactive theorem prover, Coa.

[

What is a string diagram? What is a category? What is an interactive
theorem prover? What 1s that diagram?

A simpler setting

A simpler setting

Process theories

« Process = a box that takes some number of inputs, and produces some number of outputs.

.« Types = each input and output is represented by a wire, that has a specified type.’

A\

X € N

f(x)=x+1

Process theory

- A process theory is:
. T: a collection of types,
. P: a collection of processes using input and output types from T,

- An operation that can map a diagram of processes in P to a singular process in P.

- We also have identity wires, which are just boxes that “do nothing”

 Process theories are graphical languages.

Process theory

Specifically functions. - f
. N
.« The process theory of functions:
. T[N f .
. P: the set of all functions on typesin T. \ |

.+ The (associative) function composition operator ., combining two functions in P to \\
form a unigue function in P

- The identity wires are just identity functions for every term of types in T.

Process theory

Specifically functions.

- The process theory of functions:

. P:the set of all functions on types in T.

. The (associative) function composition operator ., combining two functionsin Pto N
form a unigue function in P

- The identity wires are just identity functions for every term of types in T. f

he cartesian product operator ®, forming a pair of functions or inputs.

T'he stage is set

Dlagrams >>> [ext.

Which one is
petter?

p(f(gnl, n2), h(i(n3), n4)), nb)

Diagrams can pe proots.

Textually distinct,

Diagrammatically equivalent.

« (g1ofl) ®(g2of2)

- (g1 ®g2) o (f1 ® f2)

1

2

Textually distinct,

Diagrammatically equivalent.

(g1 o 1)

1

2

Textually distinct,

Diagrammatically equivalent.

(g2 o 2)

1

2

Textually distinct,

Diagrammatically equivalent.

» (glofl) ® (g2 o f2)

1

2

Textually distinct,

Diagrammatically equivalent.

(91 ® g2)

1

2

Textually distinct,

Diagrammatically equivalent.

(M ® 12)

1

2

Textually distinct,

Diagrammatically equivalent.

- (g1 ®g2) o (f1 ®f2)

1

2

Textually distinct,

Diagrammatically equivalent.

« (g1ofl) ®(g2of2)

- (g1 ®g2) o (f1 ® f2)

1

2

[nside a proof assistant

Proof assistants

.« Prove properties of a program, using a mathematical specification.

- Dependently-typed proof assistants utilize the Curry-Howard-Lambek Isomorphism to
construct programs as proofs.

- Reason about structure using induction and recursion.

Dafny;

Proof assistants
Coqg

. Interactive, dependently-typed proof assistant.

- Reason about structure interactively.

Several iIntermediate stages

[ntermediate stages

. |dentity wires do not change the i
diagram semantically, but they do
sroctarally, e § §
. In an interactive proof assistant, s il
structure matters.

Canonical diagrams employ
structural apstractions.

Structural apstractions

The proof assistant cares

- fo(goh)=(fog)onh

. Proof assistant needs explicit
associative information.

- Diagram insufficient!

(-

What do we have so [ar”

- The simplicity of diagrams is not easy to translate into a purely textual form.
- A diagram may itself be a proof.
- We must reason about several intermediate stages.

- Canonical diagrammatic representations abstract over structural details.

Towork with a graphical language in a prootf assistant:

- We must do so graphically,
- But using a diagrammatic representation that is more verbose than the canonical one;
- We have several intermediate stages,

- Hence automated diagrammatic generation is desirable.

graphical
languages

String diagrams associated with a class of categories.

Process theory — Category theory
.. Whatis category theory?

- Simplity complex systems via identification of common patterns,
. |In our case, structural properties.

- To understand how it helps, we do need to know what it is.

Category

The big bad definition.

- A category € comprises:
. A collection of objects, represented A,B,C...
. A collection of arrows (or morphisms) from objects to objects, represented f,g,h....

- Operations assigning a domain and a codomain for every arrow f, such that it f has domain A
and codomain B, we write T : A = B,

- A composition operator . such that for every pair of arrows f: A = B, g: B = C, there exists a
composite arrow g - T : A = C, satistying an associative low h - (g .f)=(h -g) - T,

. For every object A, an identity arrow ida: A = A, suchthatvf: A = B,idg-f=fandf.ida=T1

Sounds ... familiar?

Sounds ... familiar?

The process theory we've seen so far forms a category.

“TOCEeSS <= Category

Process Category
Wire Object
370) Arrow / Morphism
ldentity wire ldentity arrow
Process Composition Morphism Composition

Process <= Category

Process

Category

Wire

Object

Process <= Category

Process Category

370) Arrow / Morphism

Process <= Category

Process Category

ldentity wire ldentity arrow A

Process <= Category

Process

Category

Process Composition

Morphism Composition

Addin ®, and we have ... a
monoidal category.

Monoidal Category

+ A category C is monoidal if it consists of: gych that v A, B, C, D, E, the diagrams below
commute:

- A bifunctor ® : C x C = C, meaning:

iIda ® idp = idaeR .
A.B&C.D

Ffeg)o(teg)=(fof)e(gog) (AR (B®C))®D A® ((B®C)® D)
ap B ®udp / \ g @ ap oD
- An object e € C called the unit object, (ARB)®C)®D A® (B® (C® D))
CYA@B,C,D\) A,B,C@)D
- Natural isomorphisms: (A® B) ® (C ® D)

a=aasc:(A®B)®@C=A®(B®&C) (4o eB —"7 Ae(eB)
A=M:1®A=A

PA®Zd\ /dA®/\B

p:pAZA®|:A A® B

Micnoidal Category

+ A category C is monoidal if 1 ~onsists of: gych that v A, B, C 0, E, the diagrams below

, . commute:
- A bifunctor ® : C x C = C, meaning:

ida ® idg = idasB

feg)o(feg)=(fof)®(goqg) ' . A®((B®C)®D)
B.C®1 \ g @ ap cp
- An object e € C called the ur:. object, A®(B® (C®D))

A,B,C@D

- Natural isomorphic, ns:
d=adagc: (A<B)®eC=A® (BaC)
(ARI)®B AR (1IN

A=M:ToA=A
rd PA®Zd\ /dA®>\B

DDAA®|=A A® B

Diagrams >>> definitions

We add ® We also add a unit object

Operating on both objects and categories. Whose diagrammatic representation is just empty

How does this impact structure?

B D We'll see :)
We now have processes with
f . A . multiple inputs and outputs, with
categorical semantics.
DI E
A C
feg A®B f

Categorical hierarchy..

We can keep going...

- As we go to more complex classes, we

add more structure. closed
monoidal categories monoidal categories
. We could be here forever if we went

symmetric closed braided compact
throu J h all of these ... monoidal categories monoidal categories monoidal categories

: : closed symmetric compact braided
cartesian categories : : : :
monoidal categories monoidal categories

cartesian compact symmetric
closed categories monoidal categories

Categorical hierarchy..

We can keep going...

- As we go to more complex classes, we

add more structure.
monoidal categories

. We could be here forever if we went

symmetric
through all of these ...

- S0 let’'s not do that.

cartesian categories

cartesian
closed categories

closed

monoidal categories

closed braided
monoidal categories

closed symmetric
monoidal categories

compact
monoidal categories
compact braided
monoidal categories

compact symmetric
monoidal categories

VICAR

VICAR

Visualizing Categories with Automated Rewrliting

- Framework for reasoning about (monoidal) categories in Coq.

- Specifically, these classes.

Braided Monoidal Symmetric Monoidal Closed Monoidal

Monoidal Category Category Category Category

Dagger Monoidal Dagger Braided Dagger Symmetric Dagger Symmetric Compact Monoidal
Category Monoidal Category Monoidal Category Monoidal Category Category

Dagger Category

Why do we care?

Visualizing Categories with Automated Rewrliting

- Several commonly encountered constructs can be instantiated with categorical semantics.
- For example, matrices, relations, simply-typed lambda calculus ...
. Verification methodologies may coincide due to structural similarities.

- We want to take advantage of shared structure so categorical properties can be utilized in
Oroof.

VICAR

Automated Rewrliting

- Constructively defined categorical typeclasses, making use of Cog’s inference.
. Certain uninteresting patterns emerge when dealing with proofs in Coag.
- We want these to be handled using automation.

- VICAR provides automation tactics for several commonly encountered situations.

VICAR

Visualizing Categories

(ida - T) - idp =T

<

Visualizing Categories

VICA

A®C)x(B®D)=(AxB)® (CxD)

Categories get more complex.

Braided Monoidal Category

- A braiding on a monoidal category consists
of a natural family of isomorphisms,

CAB:A®B=B®A

such that the diagrams on the left
commute.

Braided Monoidal Category
>A / B

Braiding cas

symmetric Monoidal Category

- A symmetric monoidal category is a braided monoidal category with a self-inverse braiding,
.. CaB=CTBA

B A
// = -

A . B .

B . A .

Autonomous Category

A A® A* — |
A .
’ A ,
A Counit
Fvery object has a dual, A f
A <

A A" — |

Unit

> A @A

) A

: A

A
= A @ A*

Compact Closed Category

Ssymmetric Monoidal + Autonomous

a A
A
Fvery object has a dual, A
A A

Counit Unit

'ne ZX-calculus

The ZX-calculus

- A complete set of rewrite rules for the manipulation of ZX-diagrams, which are a graphical
representation for guantum operations.

.« Consists of red and green nodes known as spiders.

. A purely diagrammatic language with semantics corresponding
to complex matrices.

The ZX-calculus

- A complete set of rewrite rules for the manipulation of ZX-diagrams, which are a graphical
representation for guantum operations.

.« Consists of red and green nodes known as spiders.

. A purely diagrammatic language with semantics corresponding
to complex matrices.

- The ZX-calculus forms a dagger compact category.

Symmetric monoidal + autonomous + dagger.

VyZX

VyZX

Verily the ZX Calculus

- A Cog formalization of the ZX-calculus.

. Uses inductive constructors for ZX-diagrams.

in out : N a: R

Z In out o : ZX 1n out Cap : ZX 0 2

Wire : ZX 11 Box : ZX 1|

zXo . ZX in mid zx4 : ZX mid out

Compose zXp zxq : ZX In out

in out : N a : R

Cup : ZX20 X inout « : ZX In out

Swap : ZX22 Empty : ZX00

zXo . ZX Ing outg zxq . ZX Iny outy

Stack zxg zxy : ZX (ing + iny) (outg + outq)

Categorical Inductive
Symbol
Concept Constructor
ida Wire -
Empty Z
O Compose <
® Stack !
Symmetric Swap 11 .
braid P

Unit Cap C
Counit Cup B

Proof assistant snenanigans
Cast

- Dependently typed terms

- The type ZX 12 is not automatically equal to the type ZX T (1 +1).

in out : N a: R in out : N a : R

Z 1n out o : ZX 1n out Cap : ZX 0 2 Cup : ZX20 X inout « : ZX In out

Wire - 7% 1 | Box = ZX || Swap : ZX 22 Empty : ZX0O0

zxo : ZX in mid zxq . ZX mid out zxo : ZX ing outg zxq : ZX inqy outq

Compose zxo zX4 : ZX in out Stack zxg zx1 @ ZX (ing + inp) (outg + outq)

cast(nm:N){n'm':N} (prin:n=n") (prim: m=m") (zx: ZXn'm') : ZX nm.

VyZX

Basic constructors

'

Empty Wire SWap

.

Green spider Red spider

Cast

VyZX
More constructors - S .

Proportionality Compose (o)

n stack, general n wires stacked Function / transform

More structure, more explicitl

Foliation

Visualization Worktlow

Worktlow
Using cog-lsp

cursor position change goal request

| vscodewer [| coqwpvscodecienm [| oovispsoner

updated goals updated goals

updated goals

: Y
goals rendered as diagram)

Visualizer client
L

Monoidal.vy M X Goals X VizCaR: f® g=f®g' X

ViCaR > Classes > = Monoidal.v > ... VMonoidal.v:168:11
159 vGoals (1)

YGoal (1)

C : Type
cC : Category C
Lemma tensor cancel 1 : mC : MonoidalCategory cC
forall {Al Bl A2 B2} cCh : CategoryCoherence cC
(f : Al ~> B1) (g 8" : A2 ~> B2), mCh : MonoidalCategoryCoherence mC
g=g >fR®g=FfRg'. Al, B1, A2,B2 : C
Proof. f : Al ~> B1
intros. g, g' : A2 ~> B2
apply tensor_compat; easy. H: g=g'
Qed.

=
[O) o)

=
O

0
1
162
3
4
5

7
4
4
7
%
Z
4
7
7
7
4
4
4
4
2
7
4
4
7
%
7
%
4
4
7
%
V
7
4
4
%

ENNNANNNAANNNNNY

f®g=1f &K g’

[
T P Messages (0)

Related Work

Rubiks.lean — ProofWidgets4

* Rubiks.lean M X wE O - Lean Infoview X
ProofWidgets > Demos » Rubiks.lean > ... v Rubiks.lean:17:3
import ProofWidgets.Component.HtmlDisplay v HTML Display
open Lean ProofWidgets e D)

open scoped ProofWidgets.Jsx Sequence: ["U""L""R""L™,"R"]

Nawrocki et al.

seq : Array String := #[]
deriving ToJson, FromJson, Inhabited

@[widget_module]
def Rubiks : Component RubiksProps where
javascript :=
include_str ".." / ".." / "build" / "js" / "rubiks.js"

def eg := #[HUH’ "LH' "RU’ HL_IH' "RH]

#html <Rubiks seq={eg} />

Ov0.06* ® ®OAO0 B Ln17,Col4 Spaces:2 UTF-8 LF leand & 0

_ \) port ProofWidgets.Component.HtmlDisplay
CommbDiag.lean 1, M X oo Lean Infoview

en Lean ProofWidgets

example {X Y 7 : Type} {f i X - Y} VCommDiag.lean:201:3 open scoped ProofWidgets.Jsx

fgj:Y—=>2} {h: X > 7} : ¥ Tactic state structure RubiksProps where

seq : Array String := #[]

r.1=f»g-> XYZ: Type
1»j=h-> fFi:X oY
f» g = i» J = by gJ Y = 7 @[widget modulel

withSelectionDisplay h: X > 7 def Rubiks : Component RubiksProps where
. i javascript := include_str ".." / ".." / ".lake" / "build" / "js" / "rubiks.js"
intro h1 h2 F =

deriving ToJlson, FromJson, Inhabited

ASEEEAREEELARLLELEERRRALAAREANNARRNNNRNNNNNNNNNNY

rw [6 h1 , hz] 7:‘71 eg := #[IILII’ IILII' IID_llI, IIU_lll' IILII’ IIDII' IIDII, IILII’ IIU_1II, IIRII’ IIDII' IIFII’ IIFII’ IIDII]

#html <Rubiks seq={eg} />

Chyp

Kissinger et al.

chyp - test.chyp

File Edit Code

id * sw * 1d ; f *
g *qg; 1d * sw * 1d

let 2
let g2

rule bialg : f ; g =g * g ; id * sw *id ; f * f

rewrite ba2 :
f*id ; f ; g ; g * 1id
=f *qg; g*id * id ; id * sw * id ; f * f ; g * 1d by bialg

rewrite frob2:

g2 * id * id ; id * id * f2
id * 1d * sw ; g * f * 1d ; 1d * 1d * sw ; 1d * f * g ; 1d * sw * 1d by frob
id * sw *x id ; f * f ; g * g ; id * sw * id by frob

Future Work

Customizaple visualization
V14 X++

. /X-calculus visualizer = specialized, distinct implementation,
« Intractable method for future instantiations.

. User-specified custom directives for a set of structural constructs.

[Nnteractive visua.

1zation

- Diagrammatic rewriting, graphically

. Bidirectional text/graphic system

Conclusion

Conclusion

Proof Visualization for Graphical Structures

- A methodology for working with graphical constructs in a proof assistant,

- An implementation of visualizations for the graphical language of string diagrams
associated with classes of categories,

- An instantiation for the ZX-calculus, a symmetric monodical autonomous category,

- An integration with the proof assistant Coq.

