
Bhakti Shah; May 17, 2024, CS Master’s Thesis Presentation

Committee: Stuart Kurtz, Robert Rand (Advisor), John Reppy

Proof Visualization for
Graphical Structures

How do we reason about graphical
languages diagrammatically in a proof

assistant?

How do we reason about graphical
languages diagrammatically in a proof

assistant?

How do we reason about graphical
languages diagrammatically in a proof

assistant?

String diagrams associated with a class of categories.

How do we reason about graphical
languages diagrammatically in a proof

assistant?

How do we reason about graphical
languages diagrammatically in a proof

assistant?
f(x, y) = x + y

How do we reason about graphical
languages diagrammatically in a proof

assistant?

How do we reason about graphical
languages diagrammatically in a proof

assistant?

The interactive theorem prover, Coq.

???
What is a string diagram? What is a category? What is an interactive

theorem prover? What is that diagram?

A simpler setting

A simpler setting
Process theories

• Process = a box that takes some number of inputs, and produces some number of outputs.

• Types = each input and output is represented by a wire, that has a specified type.`

x ∈ ℕ

f(x) = x + 1
f

ℕ

ℕ

Process theory

• A process theory is:

• T: a collection of types,

• P: a collection of processes using input and output types from T,

• An operation that can map a diagram of processes in P to a singular process in P.

• We also have identity wires, which are just boxes that “do nothing”.

• Process theories are graphical languages.

Process theory
Specifically, functions.

• The process theory of functions:

• T: [ℕ …],

• P: the set of all functions on types in T.

• The (associative) function composition operator ∘, combining two functions in P to  
form a unique function in P.

• The identity wires are just identity functions for every term of types in T.

ℕ

ℕ

g

ℕ

ℕ

f

ℕ

f

ℕ

ℕ

Process theory
Specifically, functions.

• The process theory of functions:

• T: [ℕ …],

• P: the set of all functions on types in T.

• The (associative) function composition operator ∘, combining two functions in P to  
form a unique function in P.

• The identity wires are just identity functions for every term of types in T.

• The cartesian product operator ⊗, forming a pair of functions or inputs.

f

ℕ

ℕ

f

ℕ

ℕ

ℕ

g

ℕ

ℕ

The stage is set.

Diagrams >>> Text.

Which one is
better?

 p(f(g(n1, n2), h(i(n3), n4)), n5)

p

ℕ

ℕ
f

g h

i

ℕℕℕ

ℕ

Diagrams can be proofs.

Diagrammatically equivalent.

Textually distinct,

• (g1 ◦ f1) ⊗ (g2 ◦ f2)

• (g1 ⊗ g2) ◦ (f1 ⊗ f2)

g1 g2

f2f1

Diagrammatically equivalent.

Textually distinct,

• (g1 ◦ f1) ⊗ (g2 ◦ f2)

• (g1 ⊗ g2) ◦ (f1 ⊗ f2)

g1 g2

f2f1

Diagrammatically equivalent.

Textually distinct,

• (g1 ◦ f1) ⊗ (g2 ◦ f2)

• (g1 ⊗ g2) ◦ (f1 ⊗ f2)

g1 g2

f2f1

Diagrammatically equivalent.

Textually distinct,

• (g1 ◦ f1) ⊗ (g2 ◦ f2)

• (g1 ⊗ g2) ◦ (f1 ⊗ f2)

g1 g2

f2f1

Diagrammatically equivalent.

Textually distinct,

• (g1 ◦ f1) ⊗ (g2 ◦ f2)

• (g1 ⊗ g2) ◦ (f1 ⊗ f2)

g1 g2

f2f1

Diagrammatically equivalent.

Textually distinct,

• (g1 ◦ f1) ⊗ (g2 ◦ f2)

• (g1 ⊗ g2) ◦ (f1 ⊗ f2)

g1 g2

f2f1

Diagrammatically equivalent.

Textually distinct,

• (g1 ◦ f1) ⊗ (g2 ◦ f2)

• (g1 ⊗ g2) ◦ (f1 ⊗ f2)

g1 g2

f2f1

Diagrammatically equivalent.

Textually distinct,

• (g1 ◦ f1) ⊗ (g2 ◦ f2)

• (g1 ⊗ g2) ◦ (f1 ⊗ f2)

g1 g2

f2f1

Inside a proof assistant

Proof assistants

• Prove properties of a program, using a mathematical specification.

• Dependently-typed proof assistants utilize the Curry-Howard-Lambek Isomorphism to
construct programs as proofs.

• Reason about structure using induction and recursion.

Proof assistants
Coq

• Interactive, dependently-typed proof assistant.

• Reason about structure interactively.

Several intermediate stages

Intermediate stages

• Identity wires do not change the
diagram semantically, but they do
structurally.

• In an interactive proof assistant,
structure matters.

f f f

Canonical diagrams employ
structural abstractions.

The proof assistant cares.

Structural abstractions

• f ◦ (g ◦ h) = (f ◦ g) ◦ h

• Proof assistant needs explicit
associative information.

• Diagram insufficient!

g

h

f

g

h

f

g

h

f

What do we have so far?

• The simplicity of diagrams is not easy to translate into a purely textual form.

• A diagram may itself be a proof.

• We must reason about several intermediate stages.

• Canonical diagrammatic representations abstract over structural details.

To work with a graphical language in a proof assistant:

• We must do so graphically,

• But using a diagrammatic representation that is more verbose than the canonical one;

• We have several intermediate stages,

• Hence automated diagrammatic generation is desirable.

How do we reason about graphical
languages diagrammatically in a proof

assistant?

String diagrams associated with a class of categories.

Process theory → Category theory
… What is category theory?

• Simplify complex systems via identification of common patterns,

• In our case, structural properties.

• To understand how it helps, we do need to know what it is.

Category
The big bad definition.

• A category C comprises:

• A collection of objects, represented A,B,C…

• A collection of arrows (or morphisms) from objects to objects, represented f,g,h….

• Operations assigning a domain and a codomain for every arrow f, such that if f has domain A
and codomain B, we write f : A → B,

• A composition operator ∘ such that for every pair of arrows f : A → B, g : B → C, there exists a
composite arrow g ∘ f : A → C, satisfying an associative law h ∘ (g ∘ f) = (h ∘ g) ∘ f,

• For every object A, an identity arrow idA : A → A, such that ∀ f : A → B, idB ∘ f = f and f ∘ idA = f.

Sounds … familiar?

Sounds … familiar?

f

ℕ

ℕ

The process theory we’ve seen so far forms a category.

Process ↔ Category

Process Category

Wire Object

Box Arrow / Morphism

Identity wire Identity arrow

Process Composition Morphism Composition

Process ↔ Category

Process Category

Wire Object

Box Arrow / Morphism

Identity wire Identity arrow

Process Composition Morphism Composition

A

Process ↔ Category

Process Category

Wire Object

Box Arrow / Morphism

Identity wire Identity arrow

Process Composition Morphism Composition

A

f

B

Process ↔ Category

Process Category

Wire Object

Box Arrow / Morphism

Identity wire Identity arrow

Process Composition Morphism Composition

A

A

Process ↔ Category

Process Category

Wire Object

Box Arrow / Morphism

Identity wire Identity arrow

Process Composition Morphism Composition

g

f

A

B

C

Add in ⊗, and we have … a
monoidal category.

Monoidal Category

• A category C is monoidal if it consists of:

• A bifunctor ⊗ : C × C → C, meaning: 
idA ⊗ idB = idA⊗B  
(f’′ ⊗ g’′) ◦ (f ⊗ g) = (f'′ ◦ f) ⊗ (g’′ ◦ g),

• An object e ∈ C called the unit object ,

• Natural isomorphisms: 
α = αA,B,C : (A ⊗ B) ⊗ C ≃ A ⊗ (B ⊗ C) 
λ = λA : I ⊗ A ≃ A 
ρ = ρA : A ⊗ I ≃ A

Such that ∀ A, B, C, D, E, the diagrams below
commute:

Monoidal Category

• A category C is monoidal if it consists of:

• A bifunctor ⊗ : C × C → C, meaning: 
idA ⊗ idB = idA⊗B  
(f’′ ⊗ g’′) ◦ (f ⊗ g) = (f'′ ◦ f) ⊗ (g’′ ◦ g),

• An object e ∈ C called the unit object ,

• Natural isomorphisms: 
α = αA,B,C : (A ⊗ B) ⊗ C ≃ A ⊗ (B ⊗ C) 
λ = λA : I ⊗ A ≃ A 
ρ = ρA : A ⊗ I ≃ A

Such that ∀ A, B, C, D, E, the diagrams below
commute:

Diagrams >>> definitions

Operating on both objects and categories.

We add ⊗

f g

A C

B D

A B

f ⊗ g A ⊗ B

We also add a unit object
Whose diagrammatic representation is just empty.

We now have processes with
multiple inputs and outputs, with
categorical semantics.

f

A B C

D E

How does this impact structure? 
We’ll see :)

We can keep going…

Categorical hierarchy…

• As we go to more complex classes, we
add more structure.

• We could be here forever if we went
through all of these …

We can keep going…

Categorical hierarchy…

• As we go to more complex classes, we
add more structure.

• We could be here forever if we went
through all of these …

• So let’s not do that.

ViCAR

ViCAR
Visualizing Categories with Automated Rewriting

• Framework for reasoning about (monoidal) categories in Coq.

• Specifically, these classes.

Why do we care?
Visualizing Categories with Automated Rewriting

• Several commonly encountered constructs can be instantiated with categorical semantics.

• For example, matrices, relations, simply-typed lambda calculus …

• Verification methodologies may coincide due to structural similarities.

• We want to take advantage of shared structure so categorical properties can be utilized in
proof.

ViCAR
Visualizing Categories with Automated Rewriting

• Constructively defined categorical typeclasses, making use of Coq’s inference.

• Certain uninteresting patterns emerge when dealing with proofs in Coq.

• We want these to be handled using automation.

• ViCAR provides automation tactics for several commonly encountered situations.

ViCAR
Visualizing Categories with Automated Rewriting

f ⊗ g

f ∘ g

idA

f ≃ g

ViCAR
Visualizing Categories with Automated Rewriting

(idA ∘ f) ∘ idB ≃ f

ViCAR
Visualizing Categories with Automated Rewriting

(A ⊗ C) × (B ⊗ D) ≃ (A × B) ⊗ (C × D)

Categories get more complex.

Braided Monoidal Category

• A braiding on a monoidal category consists
of a natural family of isomorphisms,  
 
cA,B : A ⊗ B ≃ B ⊗ A 
 
such that the diagrams on the left
commute.

Braided Monoidal Category

Braiding cA,B

A

A

B

B

Symmetric Monoidal Category
• A symmetric monoidal category is a braided monoidal category with a self-inverse braiding,

i.e. cA,B = c-1B,A,

A

A

B

B

cA,B

A

A

B

B

A

A

B

B
= =

Autonomous Category

Every object has a dual, A*

A
UnitCounit

A A

AA
A

A A

A

A ⊗ A* → I I → A ⊗ A*

A ⊗ A* → I I → A* ⊗ A

Compact Closed Category
Symmetric Monoidal + Autonomous

Every object has a dual, A*

A

A A

AA
Counit Unit

The ZX-calculus

The ZX-calculus

• A complete set of rewrite rules for the manipulation of ZX-diagrams, which are a graphical
representation for quantum operations.

• Consists of red and green nodes known as spiders.

• A purely diagrammatic language with semantics corresponding 
to complex matrices.

The ZX-calculus

• A complete set of rewrite rules for the manipulation of ZX-diagrams, which are a graphical
representation for quantum operations.

• Consists of red and green nodes known as spiders.

• A purely diagrammatic language with semantics corresponding 
to complex matrices.

• The ZX-calculus forms a dagger compact category.

Symmetric monoidal + autonomous + dagger.

VyZX

VyZX
Verify the ZX Calculus

• A Coq formalization of the ZX-calculus.

• Uses inductive constructors for ZX-diagrams.

Categorical
Concept

Inductive
Constructor Symbol

idA Wire −

I Empty ∅

◦ Compose ↔

⊗ Stack ↕

Symmetric
braid Swap 1 1 ×

Unit Cap ⊂

Counit Cup ⊃

Proof assistant shenanigans
Cast

• Dependently typed terms

• The type ZX 1 2 is not automatically equal to the type ZX 1 (1 + 1).

cast (n m : ℕ) {n' m' : ℕ} (prfn : n = n') (prfm : m = m') (zx : ZX n' m') : ZX n m.

VyZX
Basic constructors

Empty Wire Cup CapSwap

Green spider Red spider Cast

VyZX
More constructors

Stack (⊗)

Compose (◦)Proportionality

Function / transformn wires stackedn stack, general

More structure, more explicitly
Foliation

A

=

Visualization Workflow

Workflow
Using coq-lsp

Related Work

ProofWidgets
Nawrocki et al.

Chyp
Kissinger et al.

Future Work

Customizable visualization
ViZX++

• ZX-calculus visualizer = specialized, distinct implementation,

• Intractable method for future instantiations.

• User-specified custom directives for a set of structural constructs.

Interactive visualization

• Diagrammatic rewriting, graphically

• Bidirectional text/graphic system

Conclusion

Conclusion
Proof Visualization for Graphical Structures

• A methodology for working with graphical constructs in a proof assistant,

• An implementation of visualizations for the graphical language of string diagrams
associated with classes of categories,

• An instantiation for the ZX-calculus, a symmetric monodical autonomous category,

• An integration with the proof assistant Coq.

