Proof Visualization for Graphical Structures

Bhakti Shah; May 17, 2024, CS Master's Thesis Presentation Committee: Stuart Kurtz, Robert Rand (Advisor), John Reppy

How do we reason about graphical languages diagrammatically in a proof assistant?

How do we reason about graphical languages diagrammatically in a proof assistant?

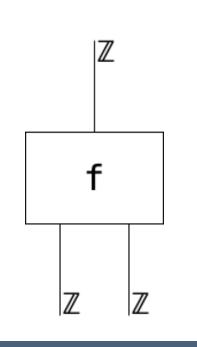
How do we reason about graphical languages diagrammatically in a proof assistant?

String diagrams associated with a class of categories.

How do we reason about graphical languages diagrammatically in a proof assistant?



f(x, y) = x + y



languages diagrammatically in a proof

How do we reason about graphical languages diagrammatically in a proof assistant?

languages diagrammatically in a proof assistant?

The interactive theorem prover, Coq.

What is a string diagram? What is a category? What is an interactive theorem prover? What is that diagram?

A simpler setting

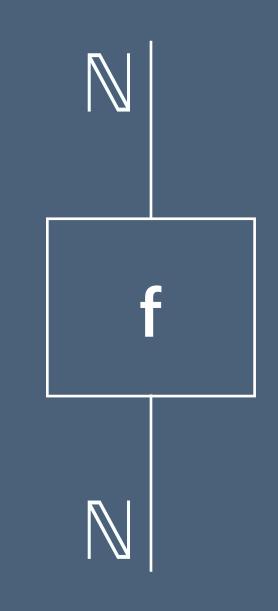
A simpler setting Process theories

- Types = each input and output is represented by a wire, that has a specified type.`

$$X \in \mathbb{N}$$

f(x) = x + 1

• Process = a **box** that takes some number of inputs, and produces some number of outputs.

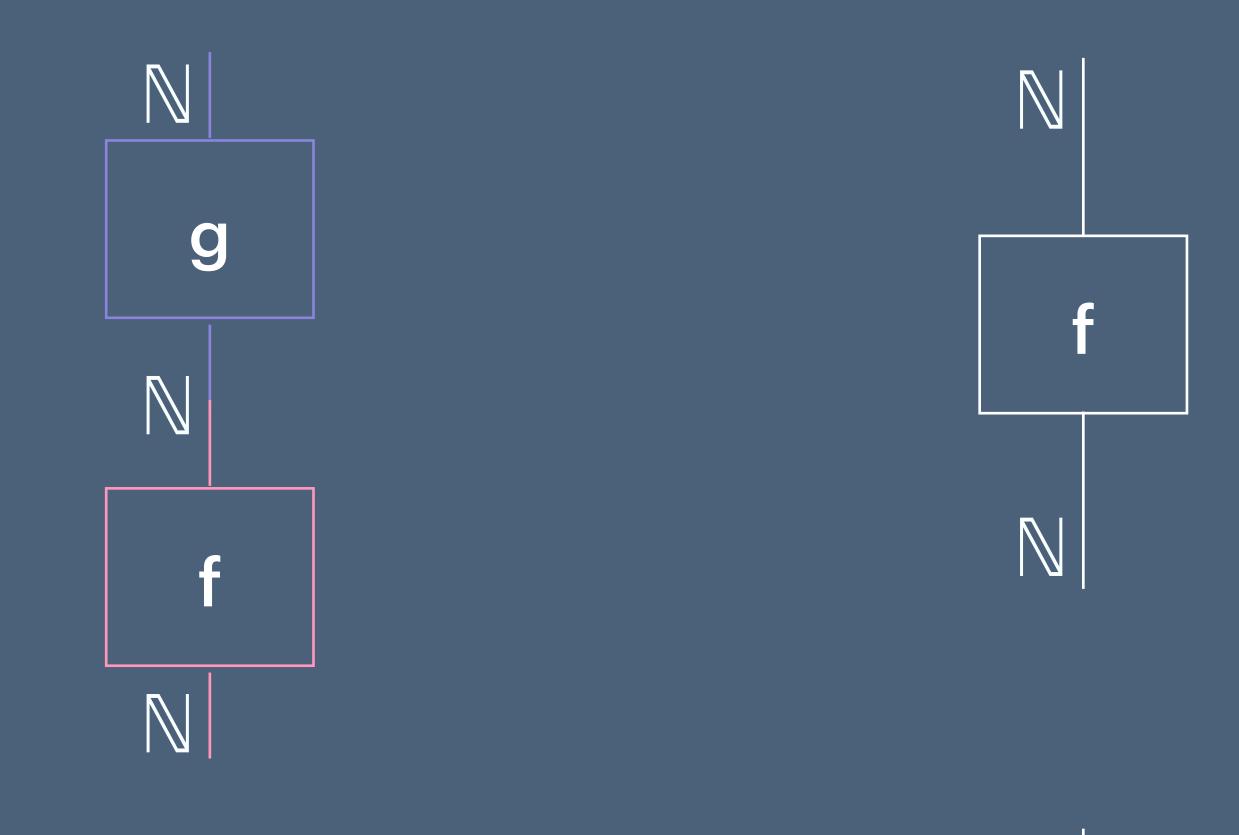


Process theory

- A process theory is:
 - T: a collection of types,
 - P: a collection of processes using input and output types from T,
 - An operation that can map a diagram of processes in P to a singular process in P.
 - We also have *identity* wires, which are just boxes that "do nothing".
 - Process theories are graphical languages.

Process theory Specifically, functions.

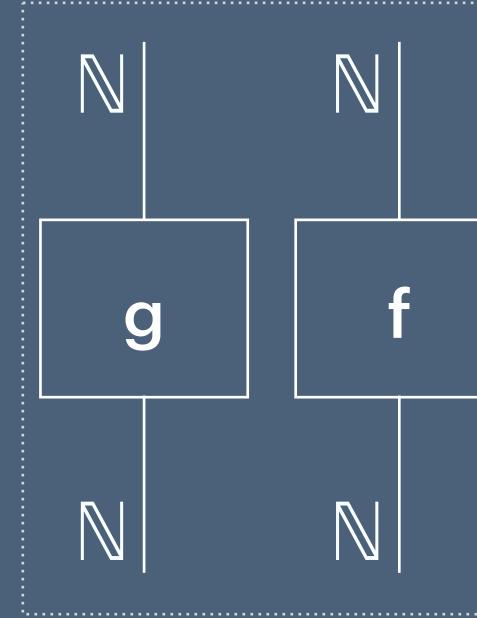
- The process theory of functions:
 - *T*: [ℕ...],
 - P: the set of all functions on types in T.
 - form a unique function in *P*.
 - The identity wires are just identity functions for every term of types in T.

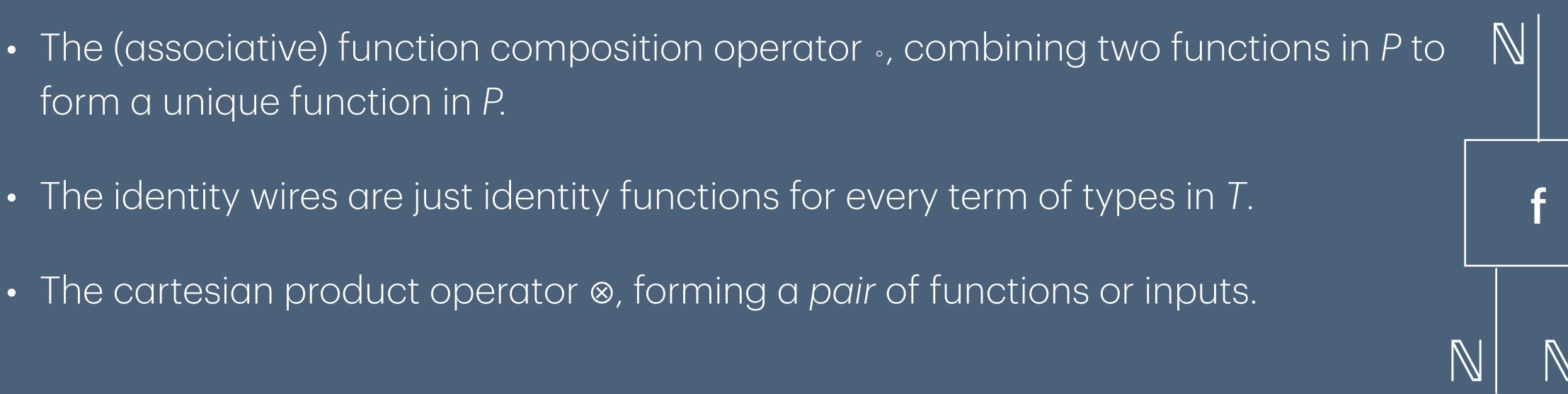


• The (associative) function composition operator $_{\circ}$, combining two functions in P to

Process theory Specifically, functions.

- The process theory of functions:
 - *T*: [ℕ...],
 - P: the set of all functions on types in T.
 - form a unique function in *P*.
 - The identity wires are just identity functions for every term of types in T.
 - The cartesian product operator \otimes , forming a pair of functions or inputs.



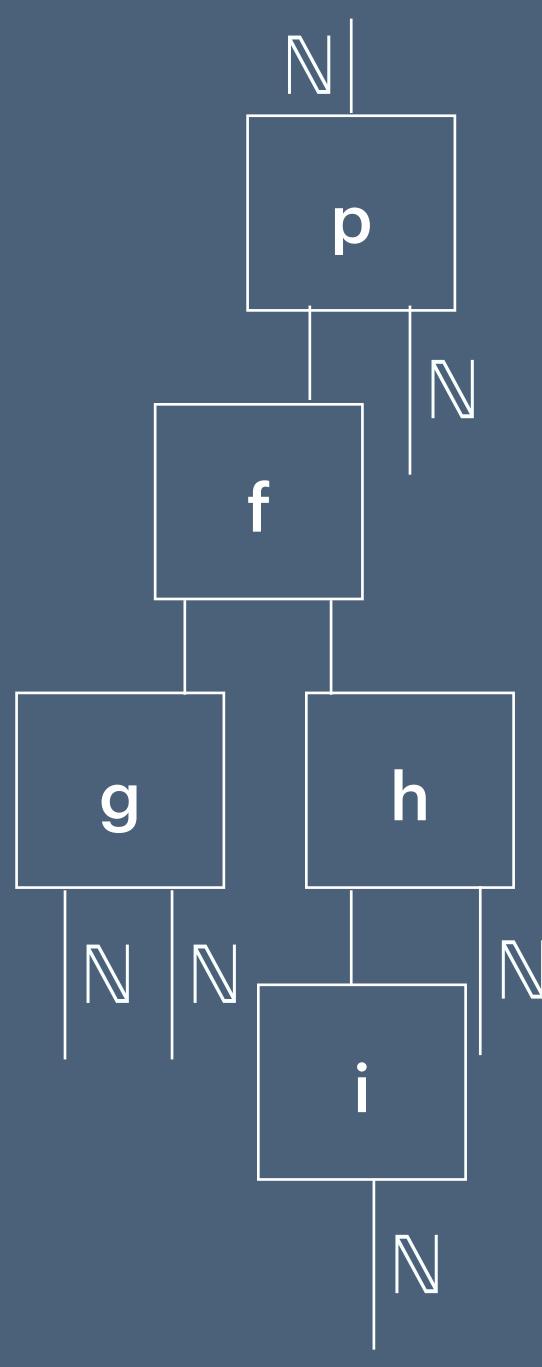


The stage is set.

Diagrams >>> Text.

Which one is better?

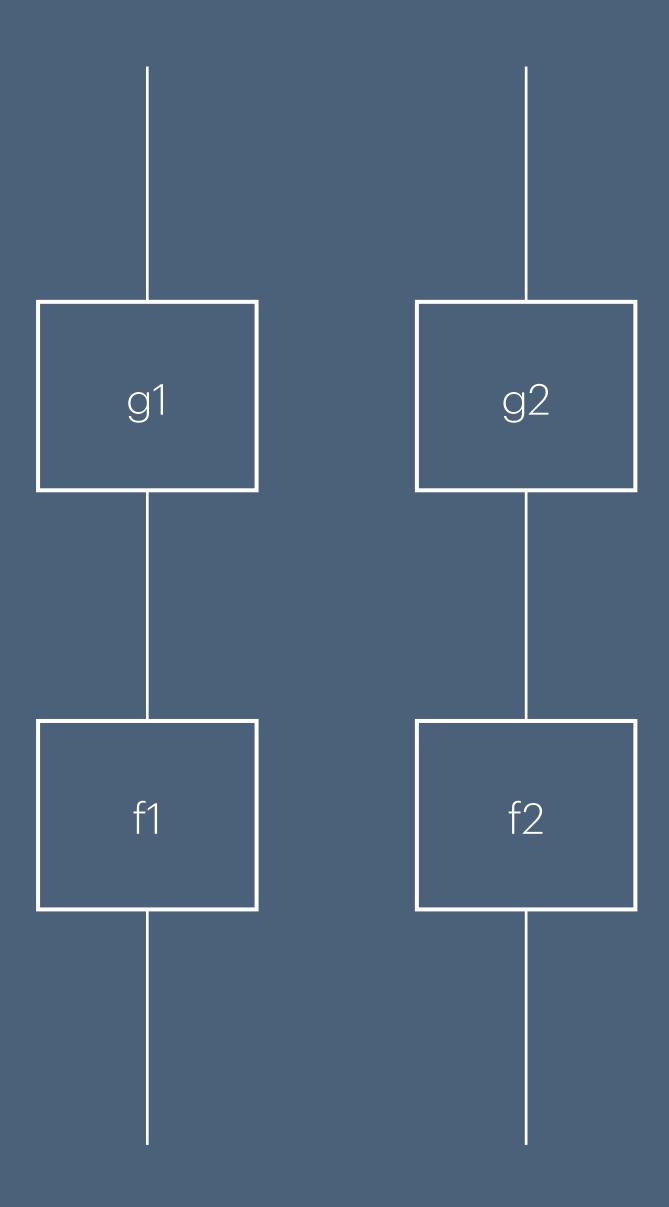
p(f(g(n1, n2), h(i(n3), n4)), n5)



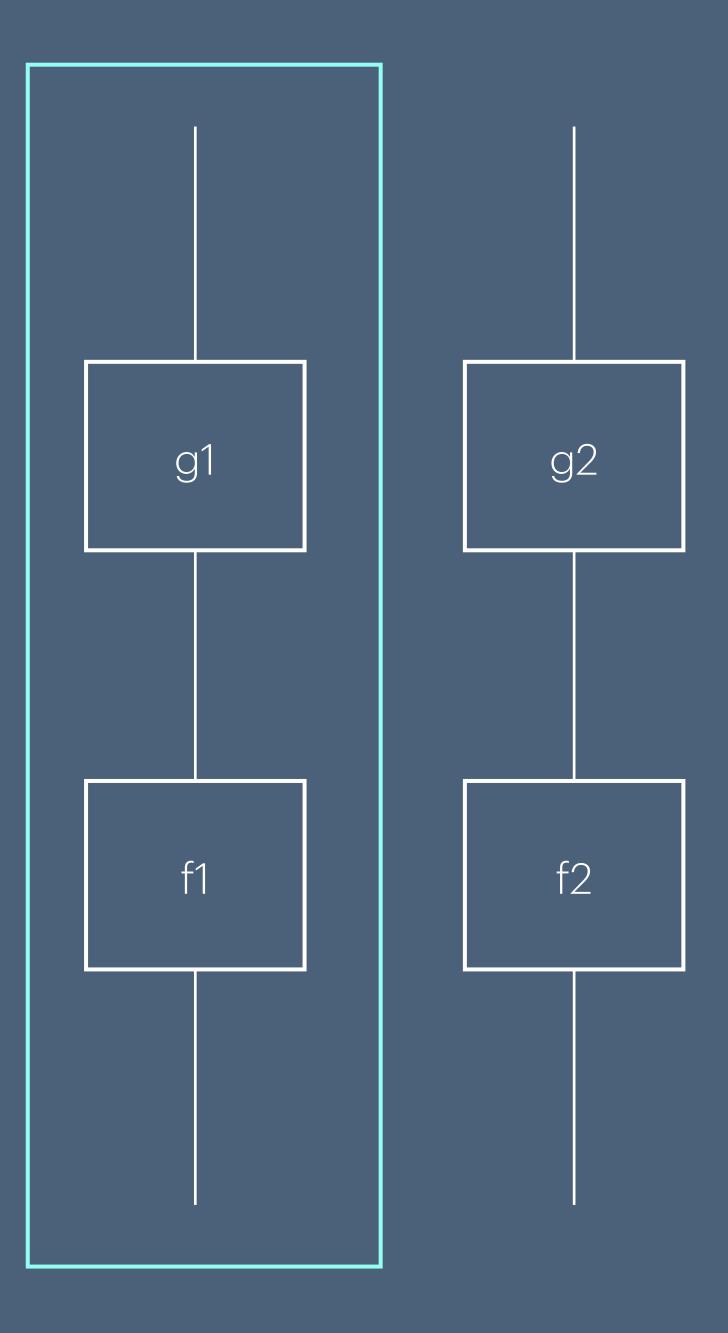
Diagrams can be proofs.

• (g1 ∘ f1) ⊗ (g2 ∘ f2)

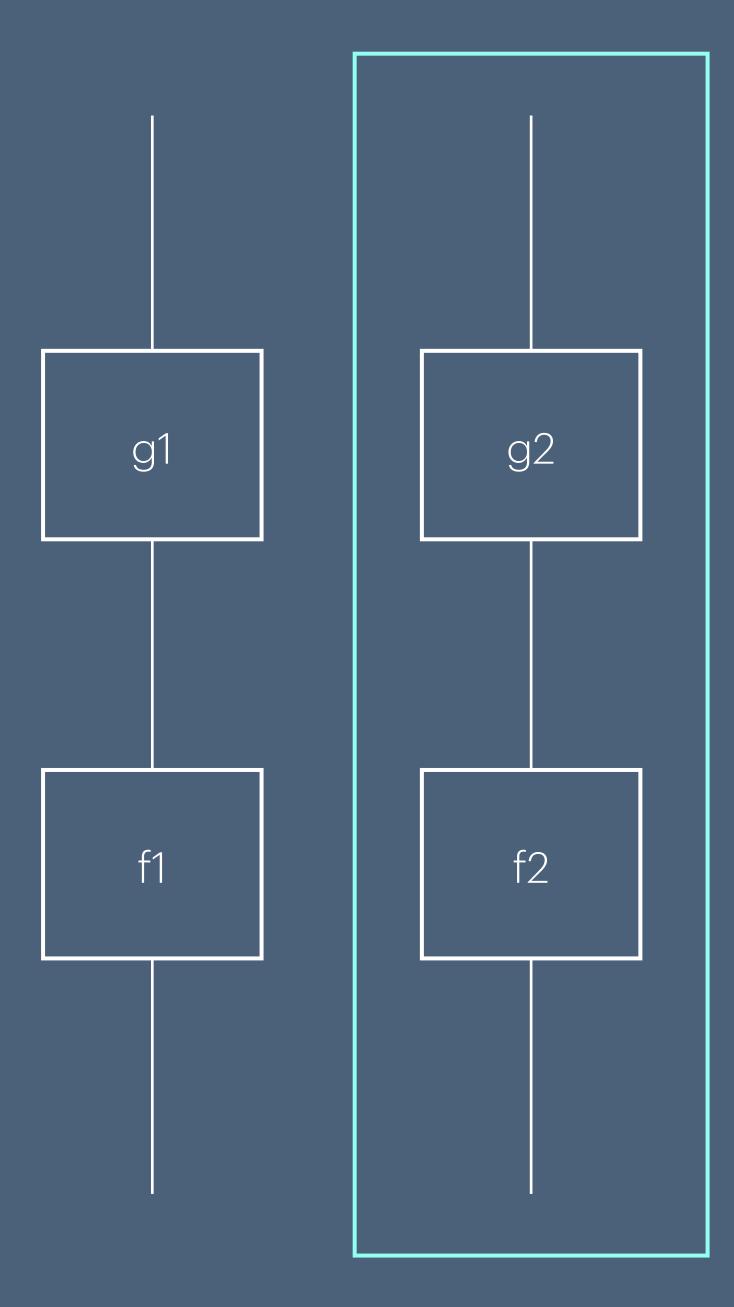
• $(g1 \otimes g2) \circ (f1 \otimes f2)$



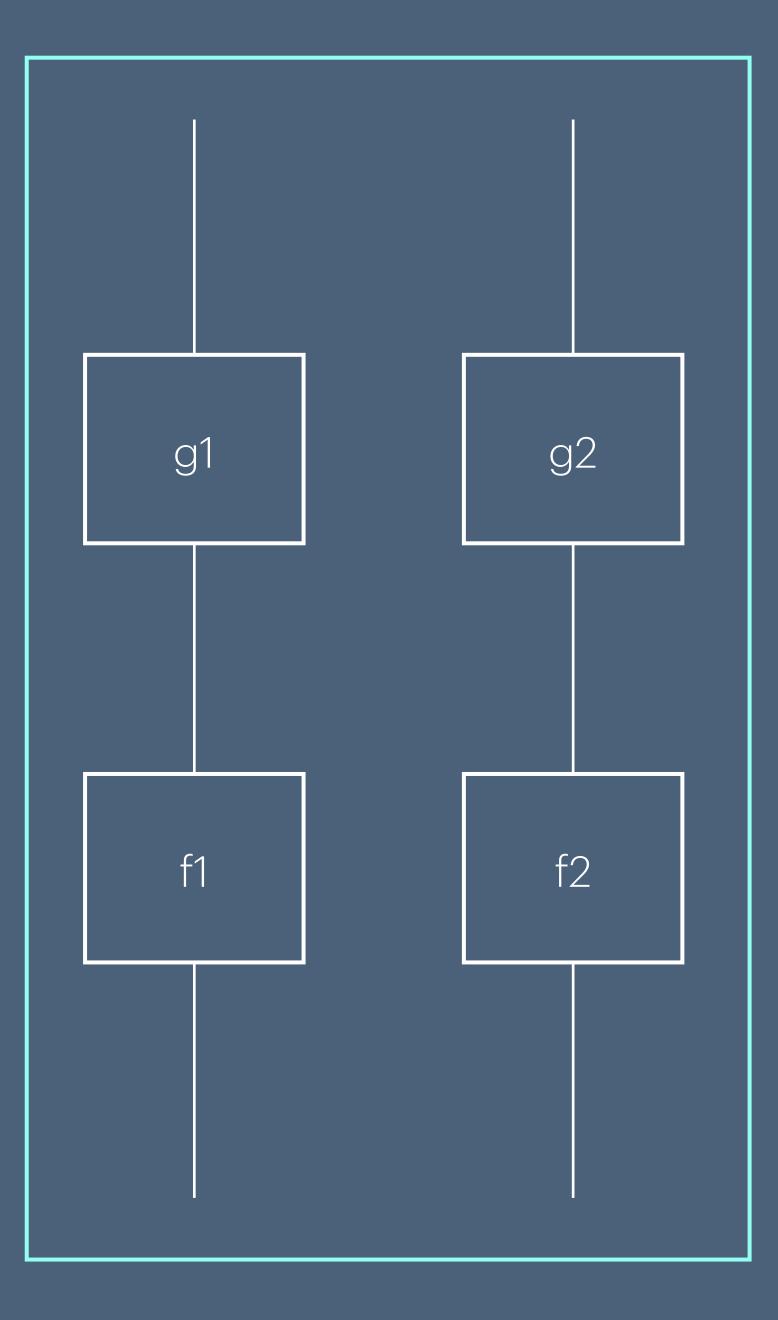
• (g1 ∘ f1) ⊗ (g2 ∘ f2)



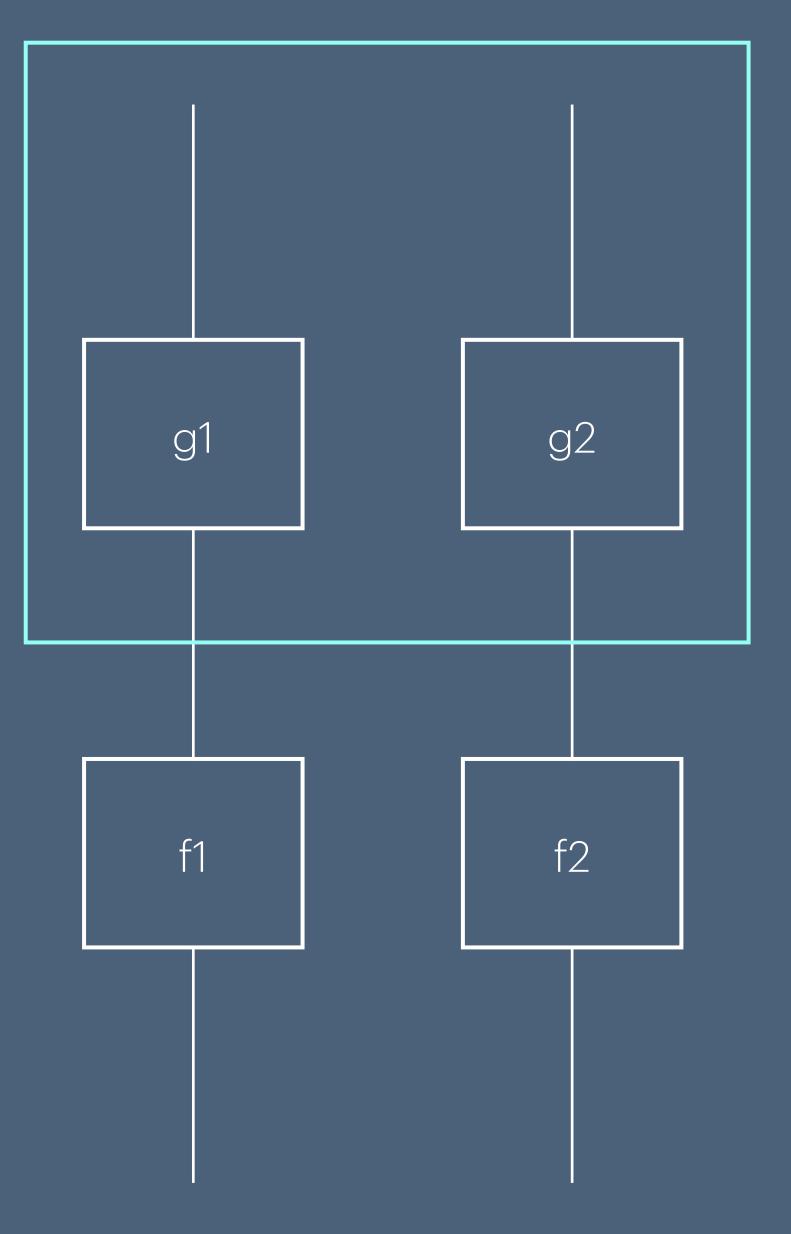
(g1 ∘ f1) ⊗ (g2 ∘ f2)



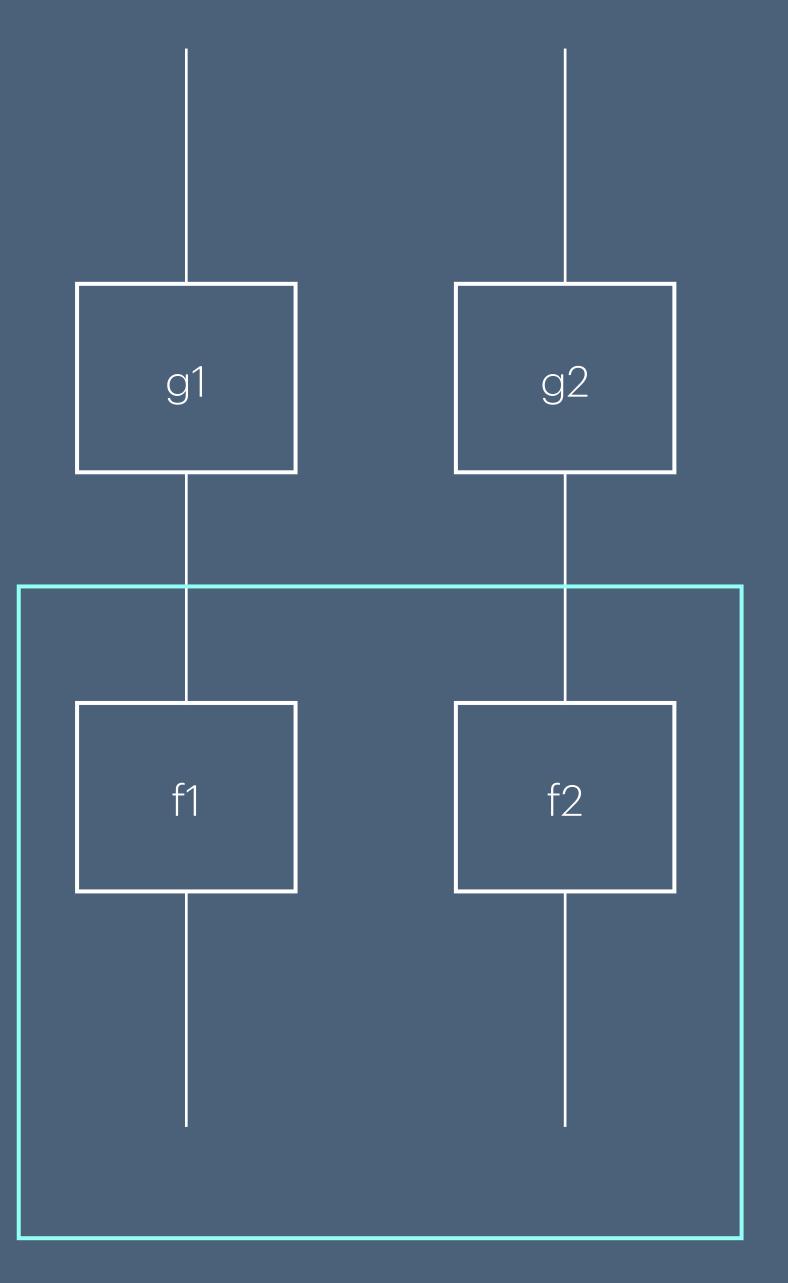
• $(g1 \circ f1) \otimes (g2 \circ f2)$



• (g1 ∘ f1) ⊗ (g2 ∘ f2)

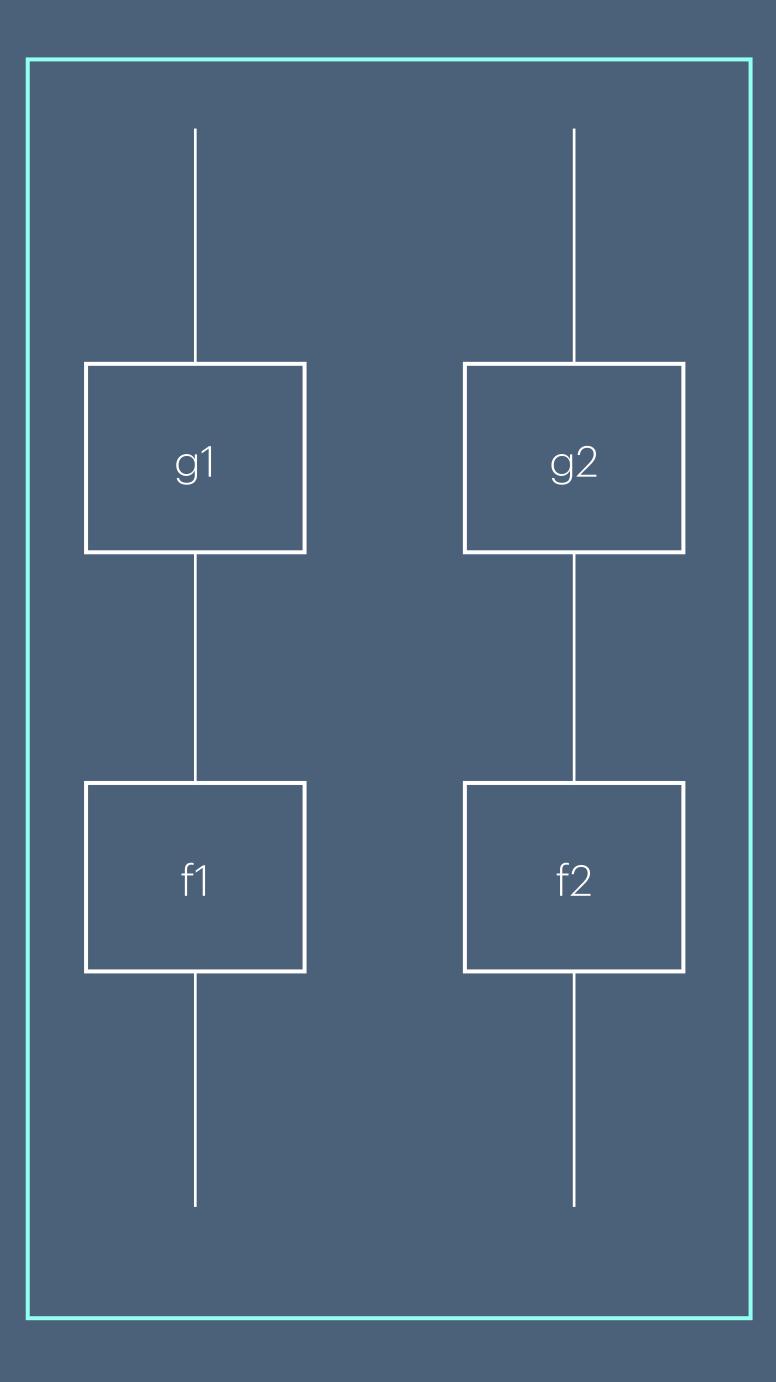


• (g1 ∘ f1) ⊗ (g2 ∘ f2)



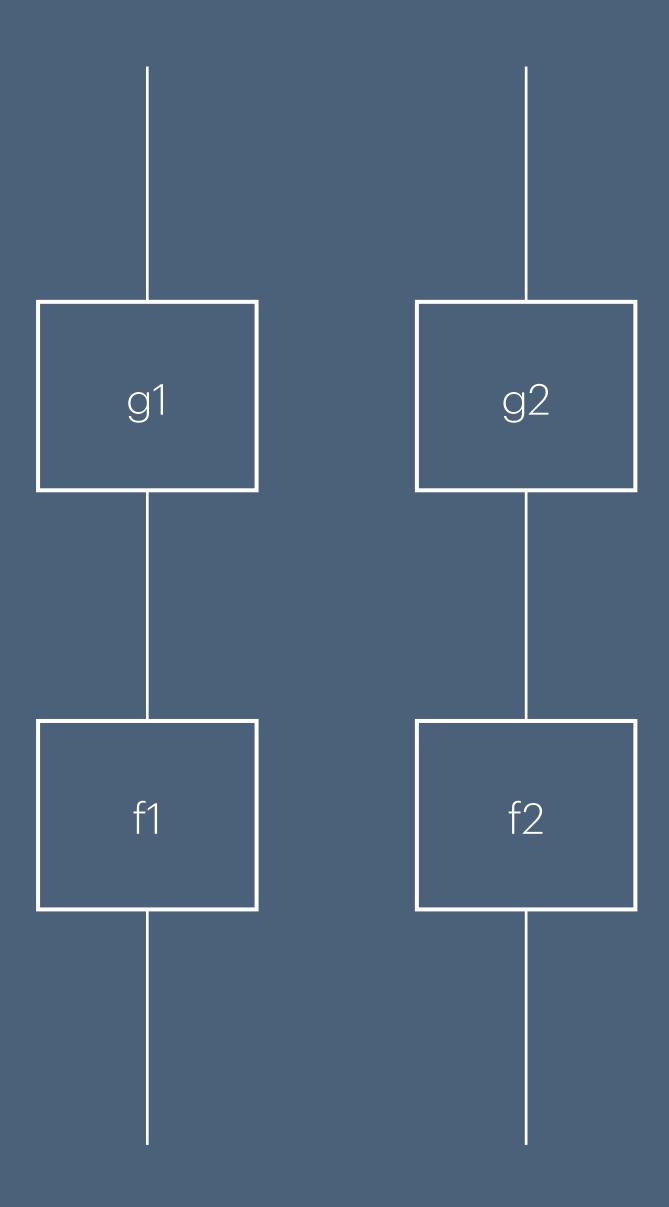
• (g1 ∘ f1) ⊗ (g2 ∘ f2)

• $(g1 \otimes g2) \circ (f1 \otimes f2)$



• (g1 ∘ f1) ⊗ (g2 ∘ f2)

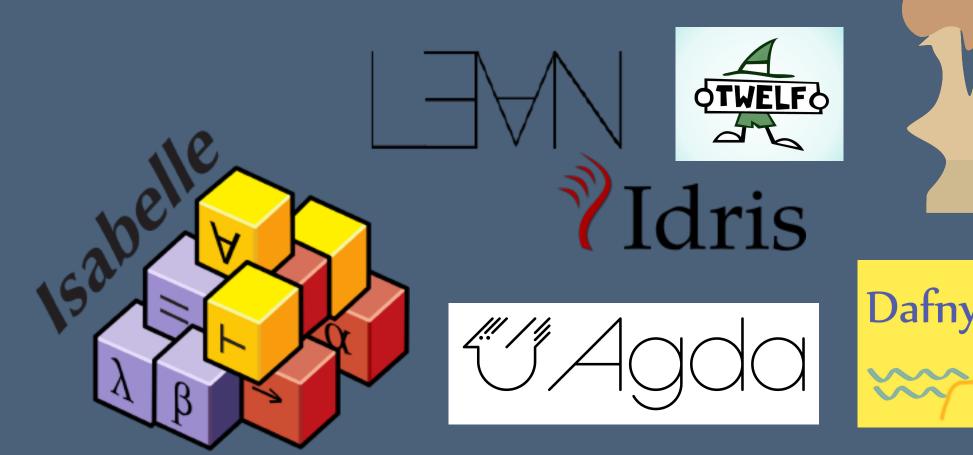
• $(g1 \otimes g2) \circ (f1 \otimes f2)$



Inside a proof assistant

Proofassistants

- Prove properties of a program, using a mathematical specification.
- Dependently-typed proof assistants utilize the Curry-Howard-Lambek Isomorphism to construct programs as proofs.
- Reason about structure using induction and recursion.



Proof assistants Coq

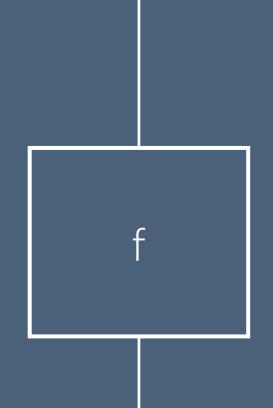
- Interactive, dependently-typed proof assistant.
- Reason about structure interactively.

Several intermediate stages

Intermediate stages

- Identity wires do not change the diagram semantically, but they do *structurally*.
- In an interactive proof assistant, structure matters.

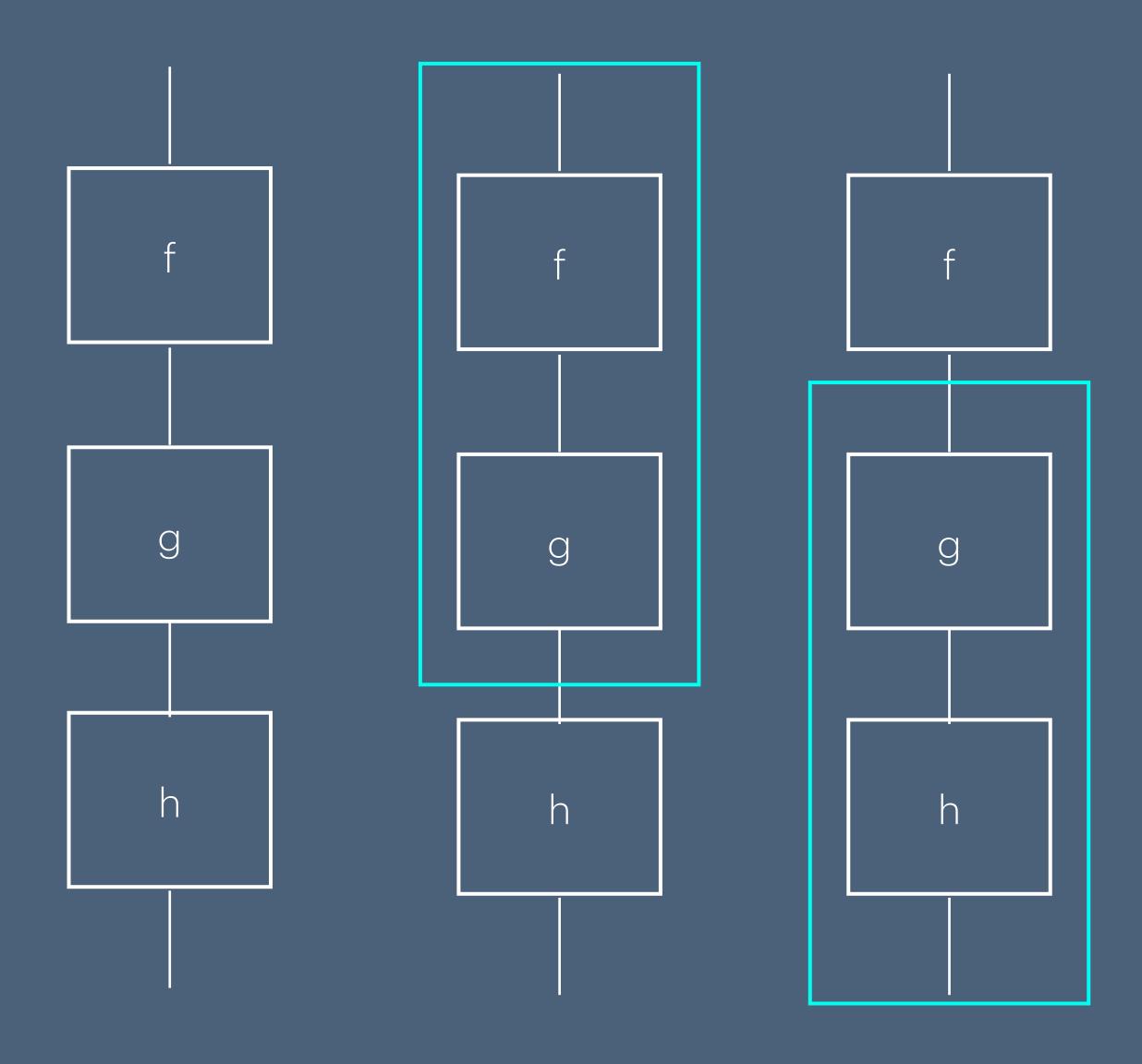
•••••• .



Canonical diagrams employ structural abstractions.

Structural abstractions The proof assistant cares.

- $f \circ (g \circ h) = (f \circ g) \circ h$
- Proof assistant needs explicit associative information.
- Diagram insufficient!



What do we have so far?

- The simplicity of diagrams is not easy to translate into a purely textual form.
- A diagram may itself be a proof.
- We must reason about several intermediate stages.
- Canonical diagrammatic representations abstract over structural details.

To work with a graphical language in a proof assistant:

- We must do so graphically,
- We have several intermediate stages,
- Hence automated diagrammatic generation is desirable.

• But using a diagrammatic representation that is more verbose than the canonical one;

How do we reason about graphical languages diagrammatically in a proof assistant?

String diagrams associated with a class of categories.

Process theory \rightarrow Category theory ... What is category theory?

- Simplify complex systems via identification of common patterns,
- In our case, structural properties.
- To understand how it helps, we do need to know what it is.

Category The big bad definition.

- A category **C** comprises:
 - A collection of *objects*, represented A,B,C...
 - A collection of arrows (or morphisms) from objects to objects, represented f,g,h....
 - and codomain B, we write $f : A \rightarrow B$,
 - composite arrow $g \circ f : A \rightarrow C$, satisfying an associative law $h \circ (g \circ f) = (h \circ g) \circ f$,

• Operations assigning a domain and a codomain for every arrow f, such that if f has domain A

• A composition operator \circ such that for every pair of arrows f : A \rightarrow B, g : B \rightarrow C, there exists a

• For every object A, an identity arrow $id_A: A \rightarrow A$, such that $\forall f: A \rightarrow B$, $id_B \circ f = f$ and $f \circ id_A = f$.

Sounds... familiar?

Sounds... familiar?

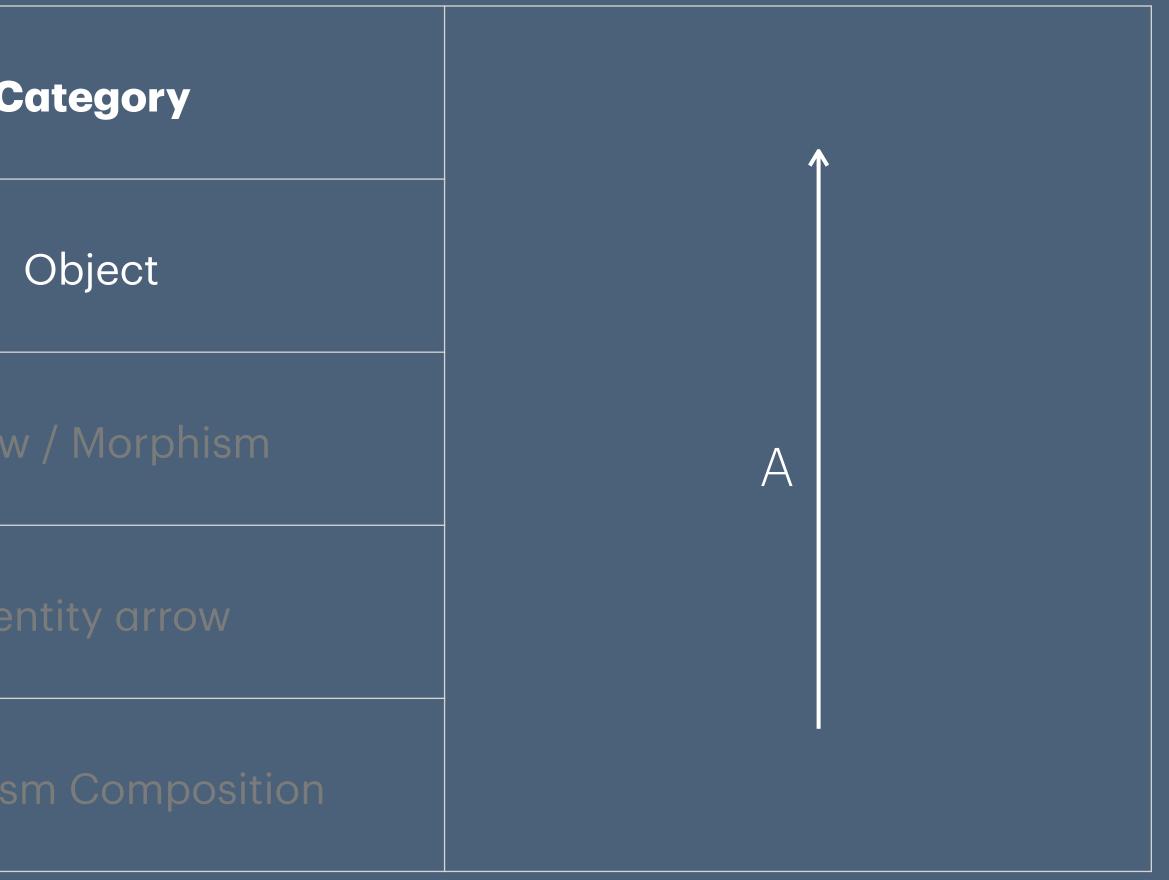
The process theory we've seen so far forms a category.

 \mathbb{N}

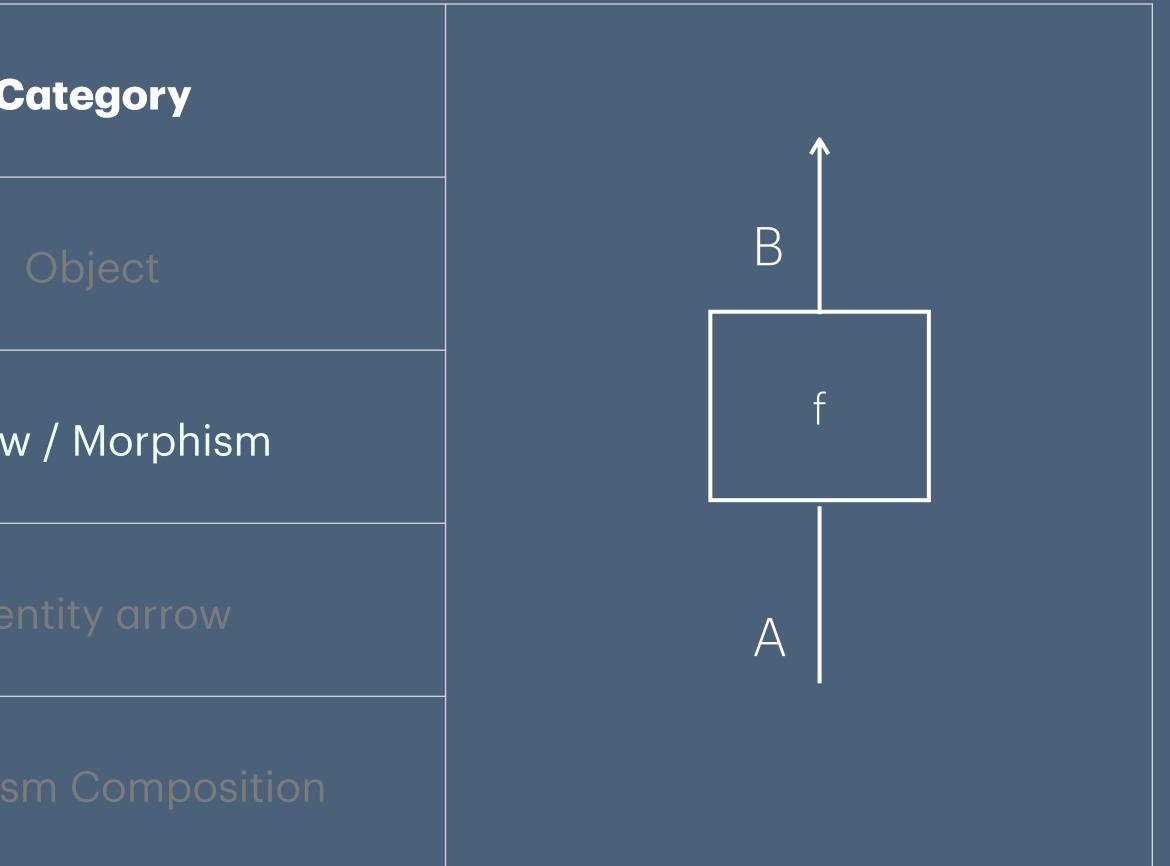


Category Object Arrow / Morphism Identity arrow Morphism Composition

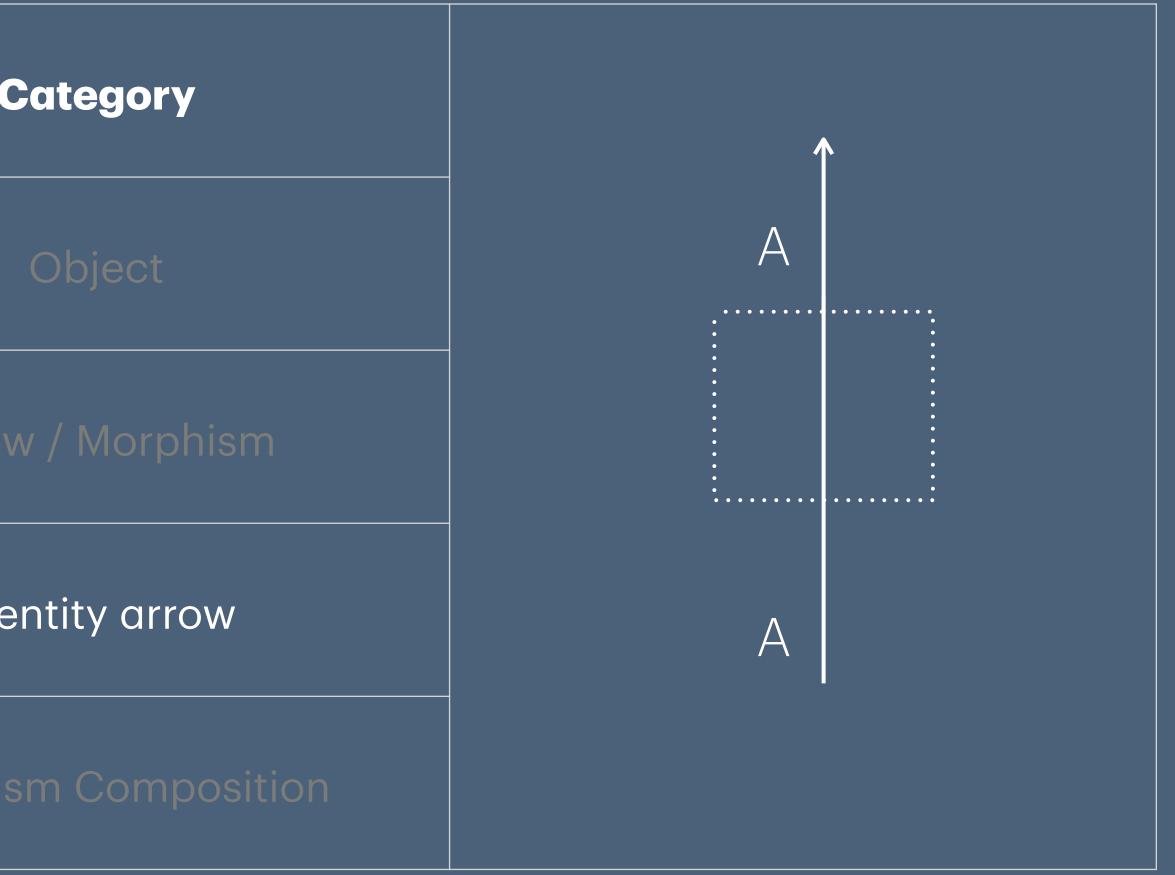
Process	C
Wire	
Box	Arrow
Identity wire	Ide
Process Composition	Morphis



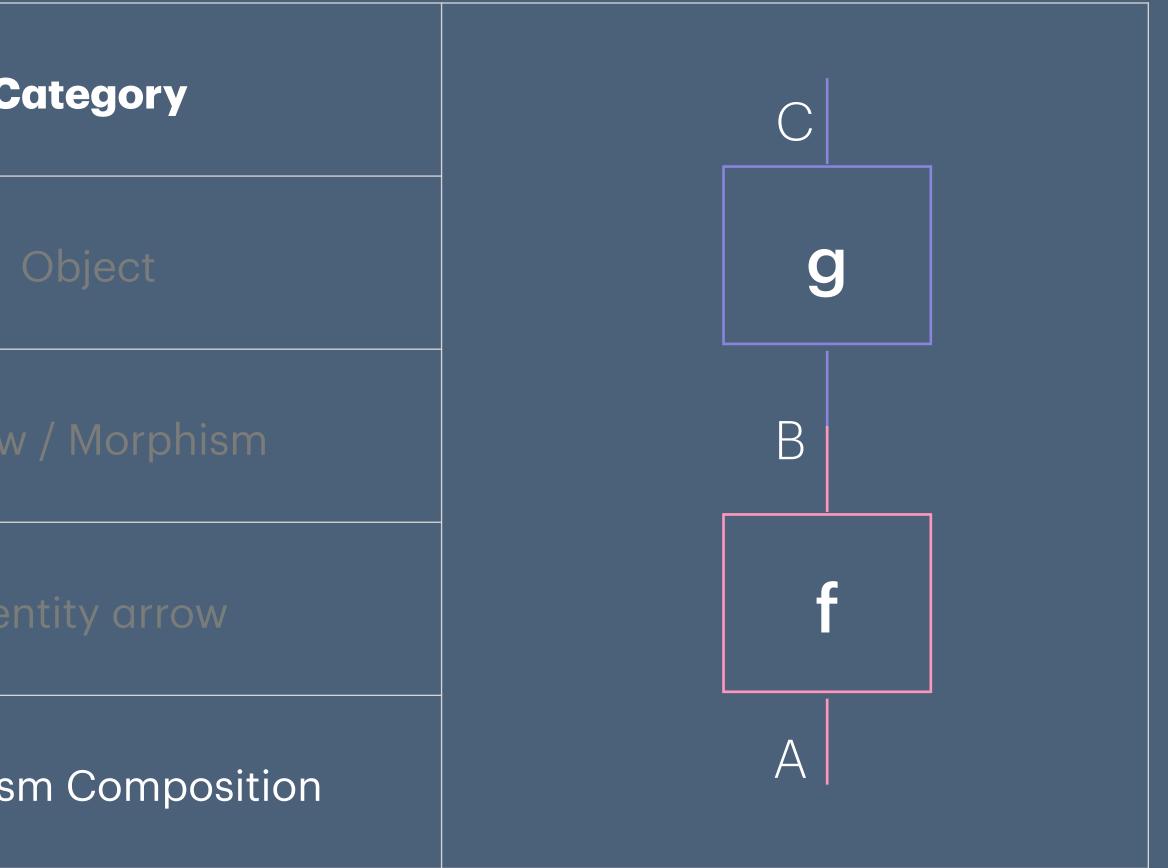
Process	C
Wire	
Box	Arrow
Identity wire	Ide
Process Composition	Morphis



Process	C
Wire	
Box	Arrow
Identity wire	Ide
Process Composition	Morphis



Process	С
Wire	
Box	Arrow
Identity wire	Idei
Process Composition	Morphis

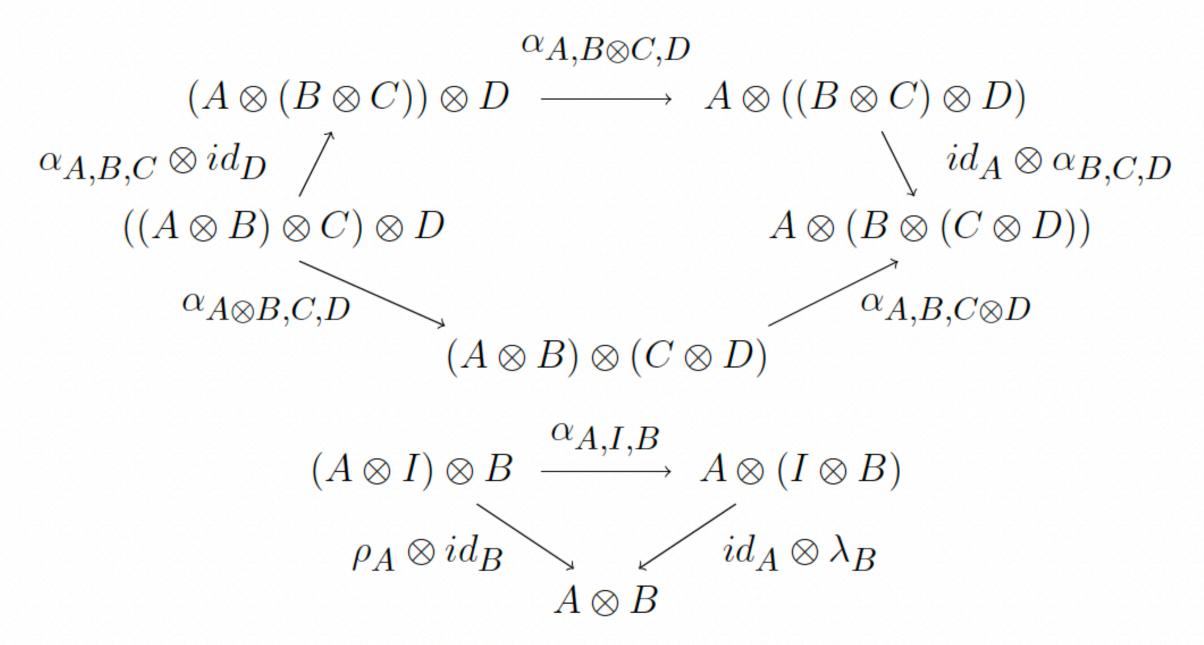


Add in (x), and we have ... a monoidal category.

Monoidal Category

- A category C is monoidal if it consists of:
 - A bifunctor \otimes : $C \times C \rightarrow C$, meaning: $id_A \otimes id_B = id_{A \otimes B}$ $(f' \otimes g') \circ (f \otimes g) = (f' \circ f) \otimes (g' \circ g),$
 - An object $e \in C$ called the *unit* object,
 - Natural isomorphisms: $\alpha = \alpha_{A,B,C} : (A \otimes B) \otimes C \simeq A \otimes (B \otimes C)$ $\lambda = \lambda_A : I \otimes A \simeq A$ $\rho = \rho_A : A \otimes I \simeq A$

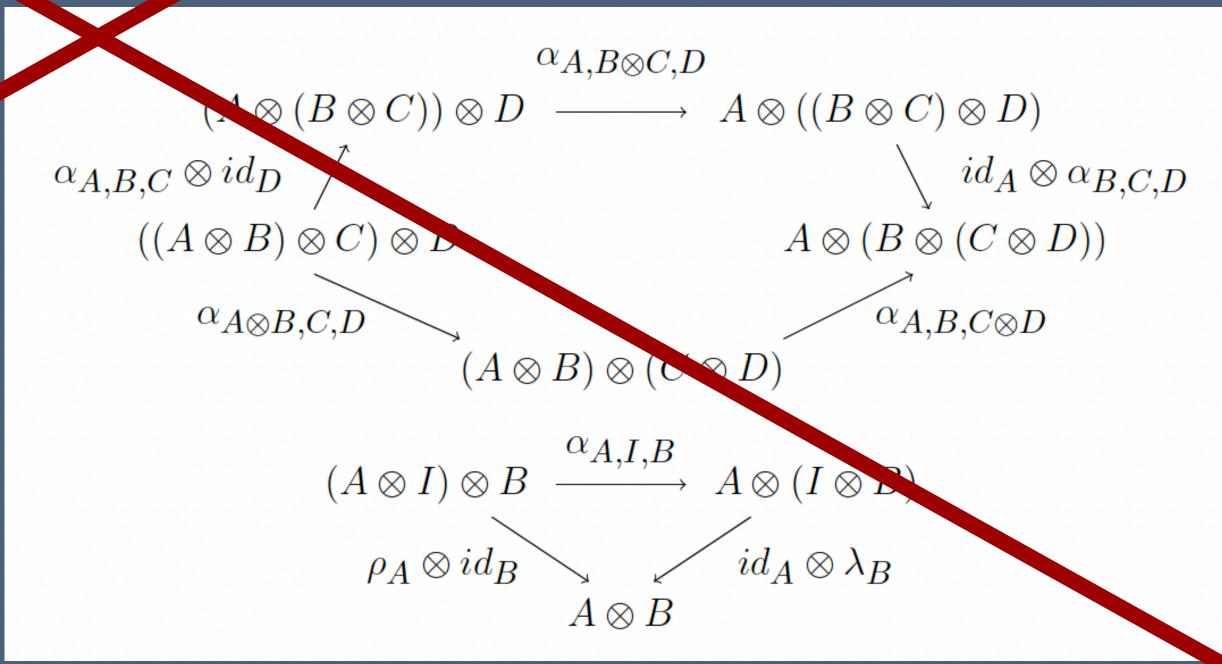
Such that \forall A, B, C, D, E, the diagrams below commute:



Monoidal Category

- A category C is monoidal if it consists of:
 - A bifunctor $\otimes : C \times C \rightarrow C$, meaning: $id_A \otimes id_B = id_{A \otimes B}$ $(f' \otimes g') \circ (f \otimes g) = (f' \circ f) \otimes (g' \circ g),$
 - An object $e \in C$ called the unit object ,
 - Natural isomorphisms: $\alpha = \alpha_{A,B,C} : (A \subset B) \otimes C \simeq A \otimes (B \otimes C)$ $\lambda = \lambda_A : I \oslash A \simeq A$ $\rho = \rho_A : A \otimes I \simeq A$

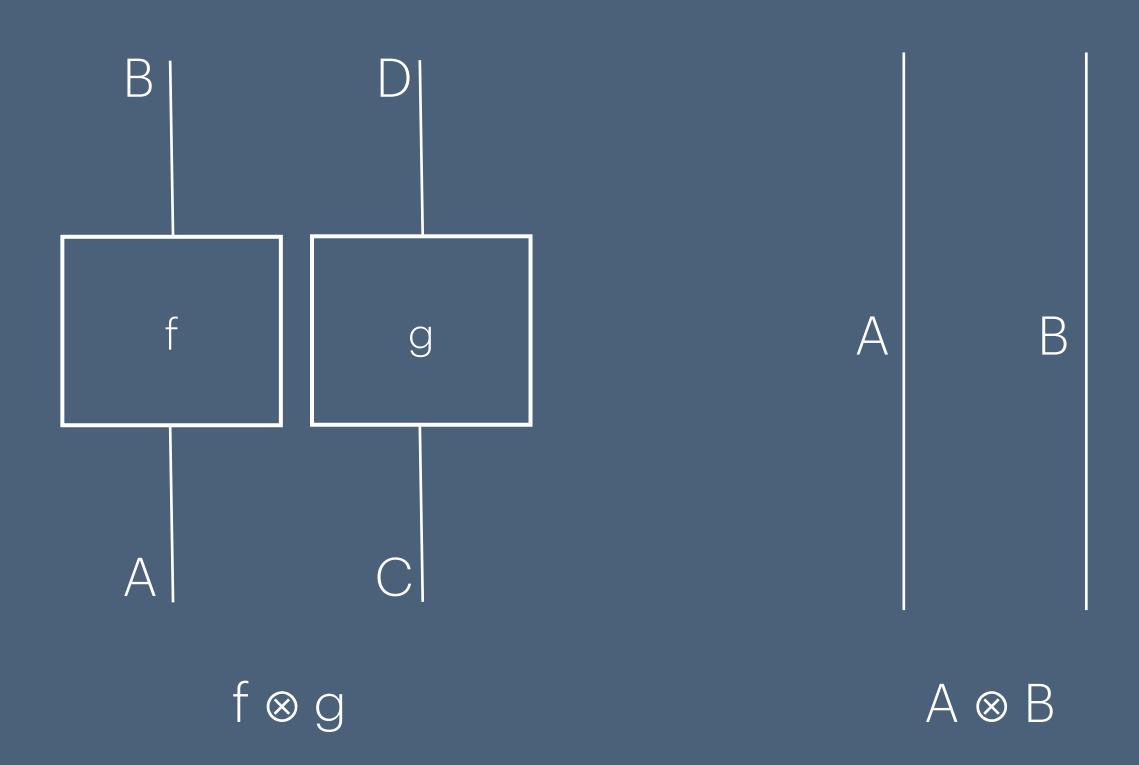
Such that ∀ A, B, C, D, E, the diagrams below commute:



Diagrams >>> definitions

We add 🛞

Operating on both objects and categories.

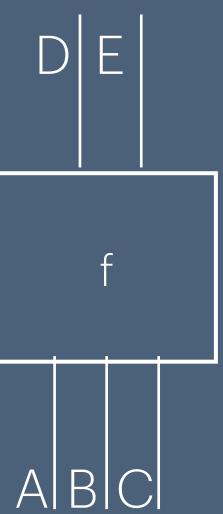


We also add a unit object

Whose diagrammatic representation is just empty.

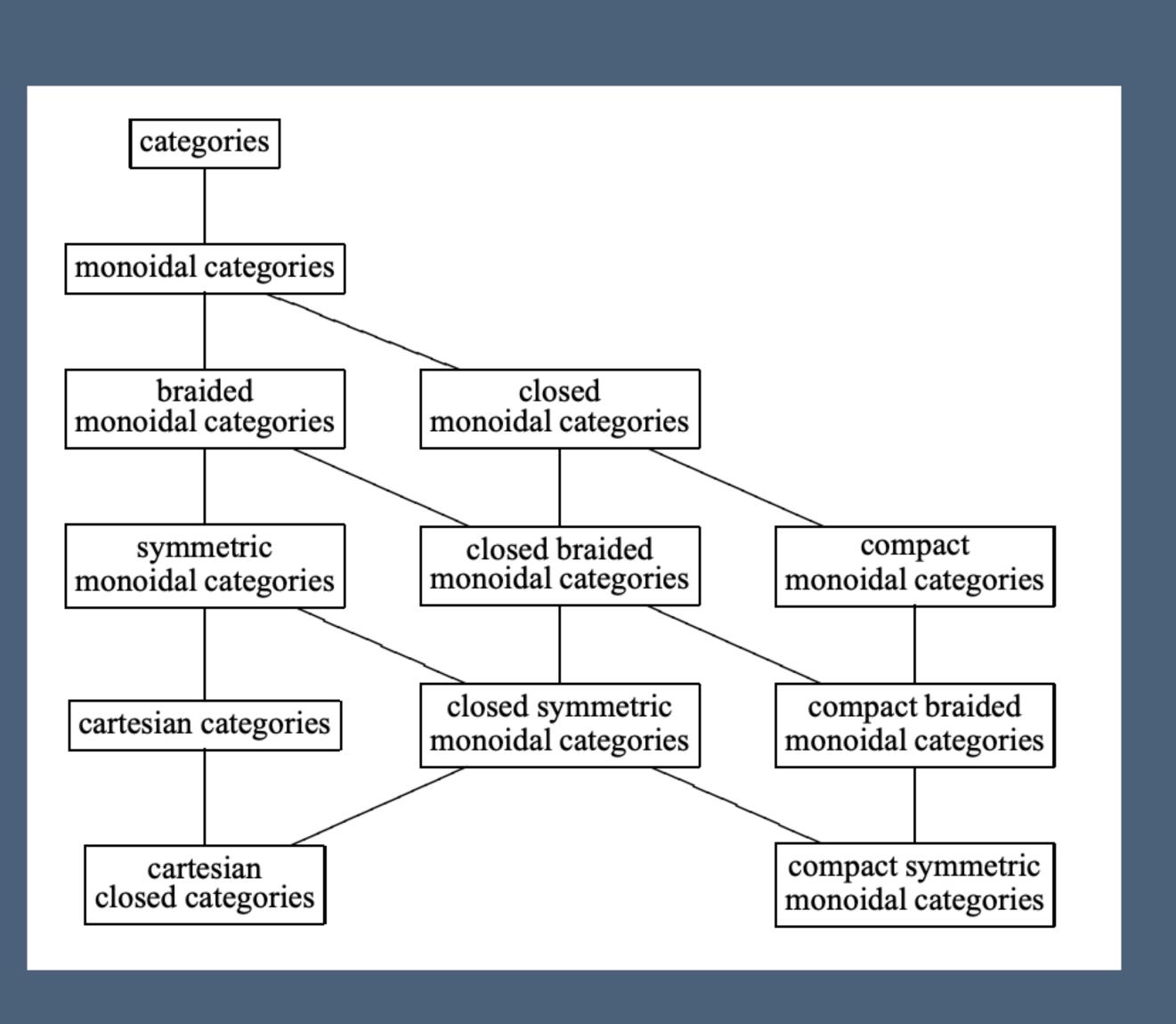
How does this impact structure? We'll see :)

We now have processes with multiple inputs and outputs, with categorical semantics.



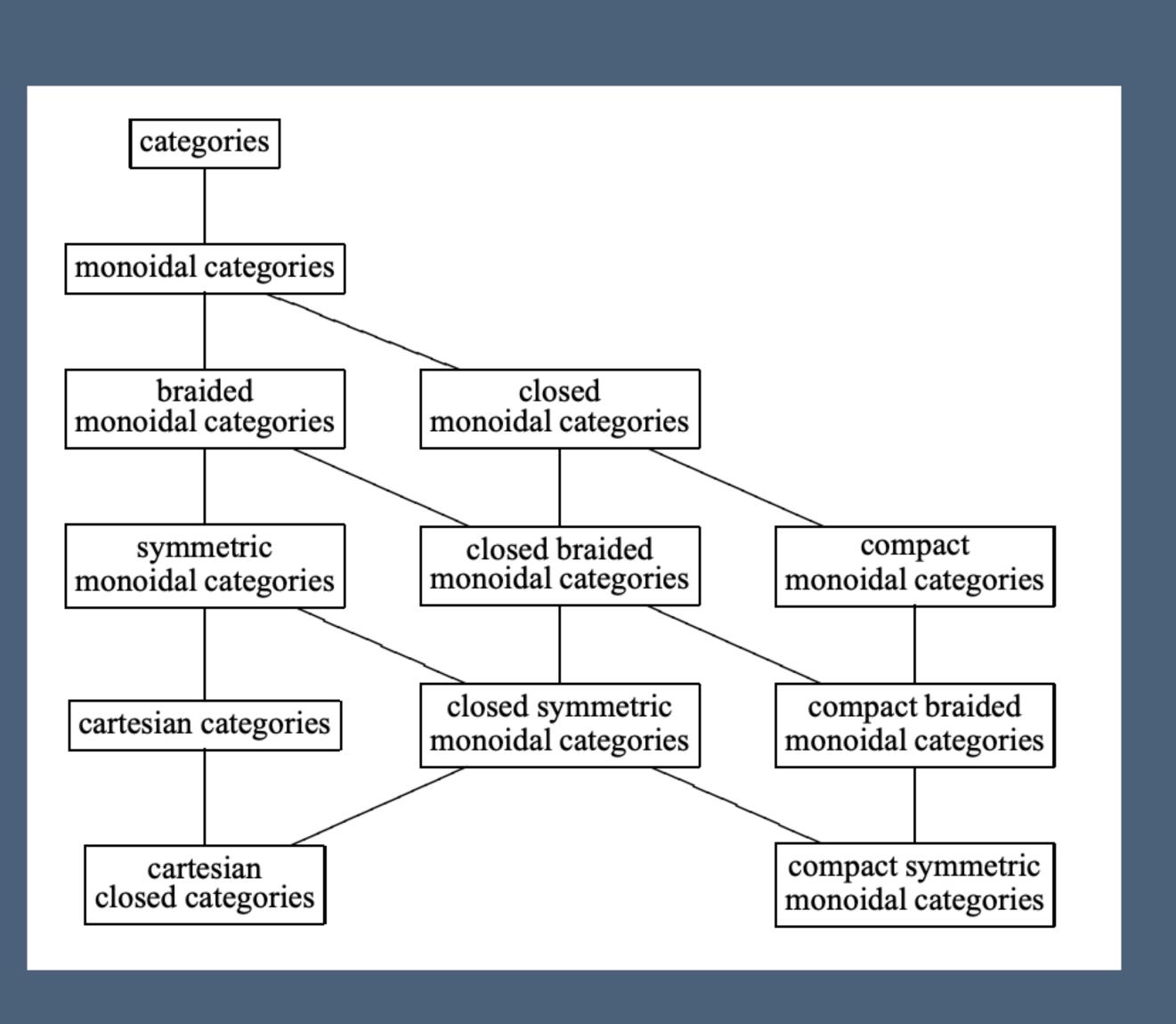
Categorical hierarchy... We can keep going...

- As we go to more complex classes, we add more structure.
- We could be here forever if we went through all of these ...



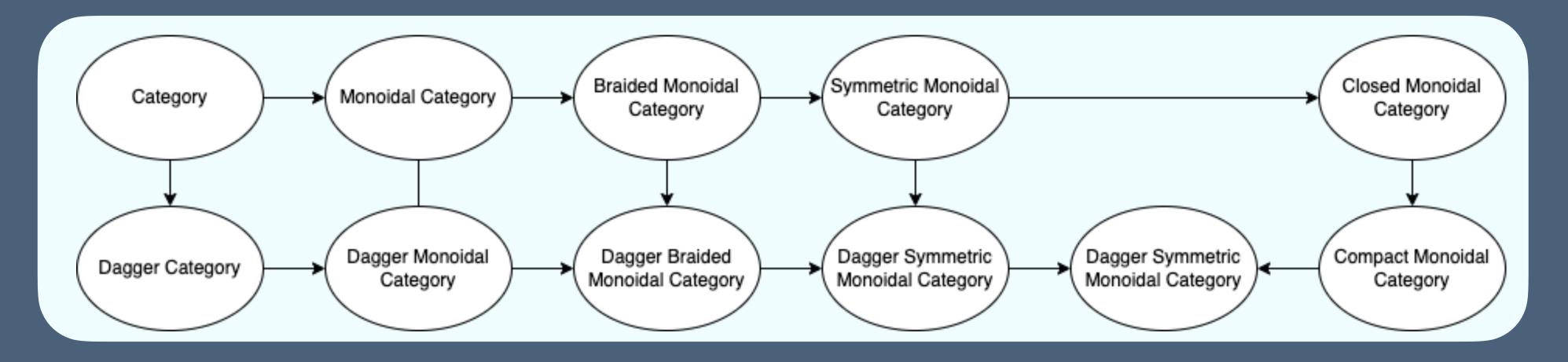
Categorical hierarchy... We can keep going...

- As we go to more complex classes, we add more structure.
- We could be here forever if we went through all of these ...
- So let's not do that.



ViCAR

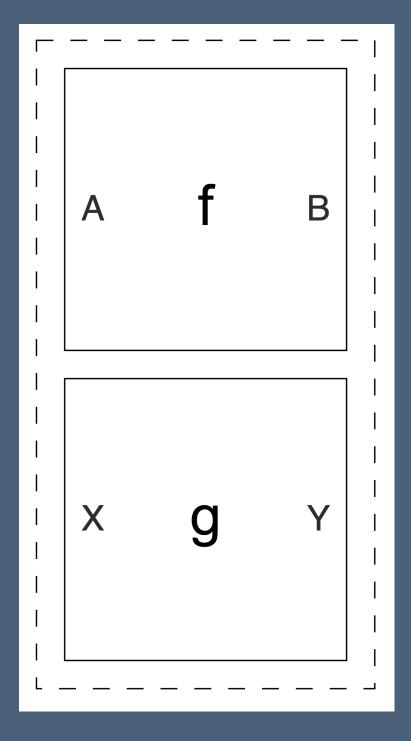
- Framework for reasoning about (monoidal) categories in Coq.
- Specifically, these classes.

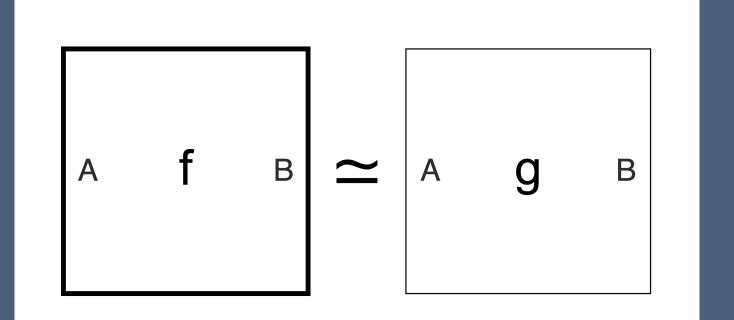


Why do we care? Visualizing Categories with Automated Rewriting

- Several commonly encountered constructs can be instantiated with categorical semantics.
- For example, matrices, relations, simply-typed lambda calculus ...
- Verification methodologies may coincide due to structural similarities.
- We want to take advantage of shared structure so categorical properties can be utilized in proof.

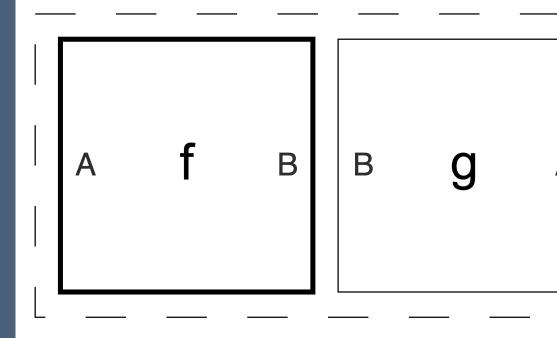
- Constructively defined categorical typeclasses, making use of Coq's inference.
- Certain uninteresting patterns emerge when dealing with proofs in Coq.
- We want these to be handled using automation.
- ViCAR provides automation tactics for several commonly encountered situations.



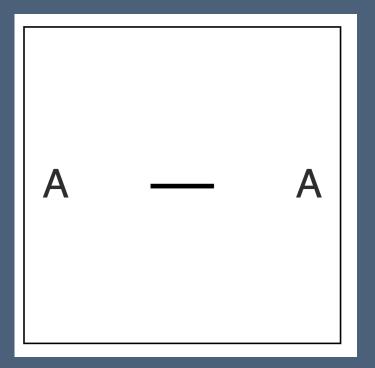


f⊗g

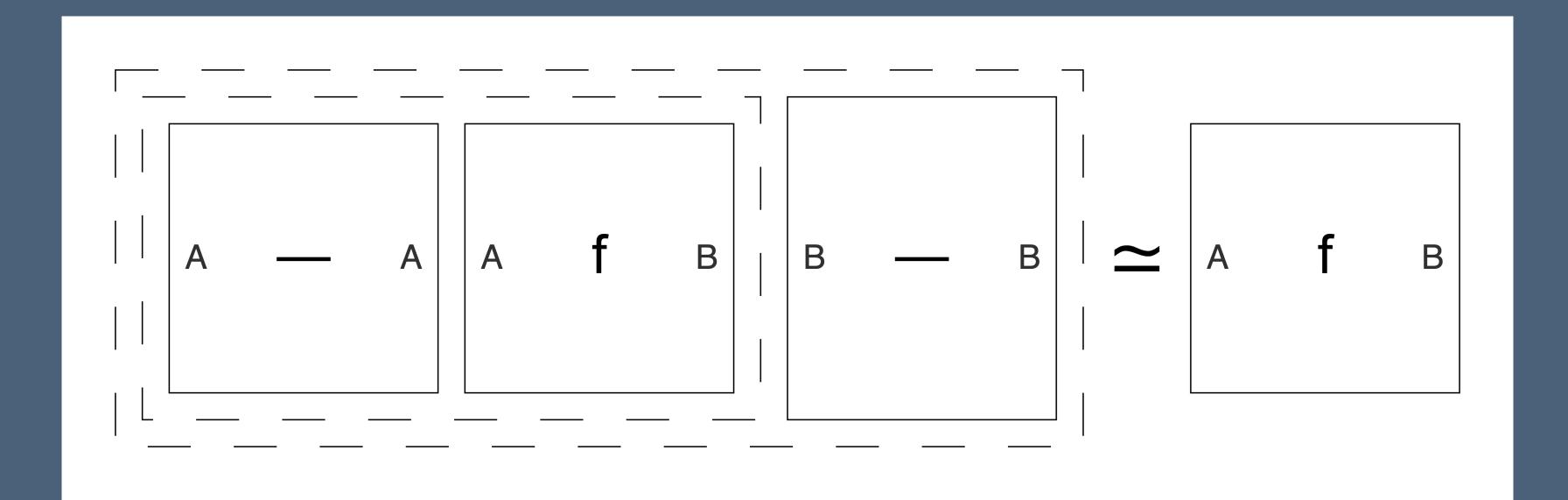
f ≃ g



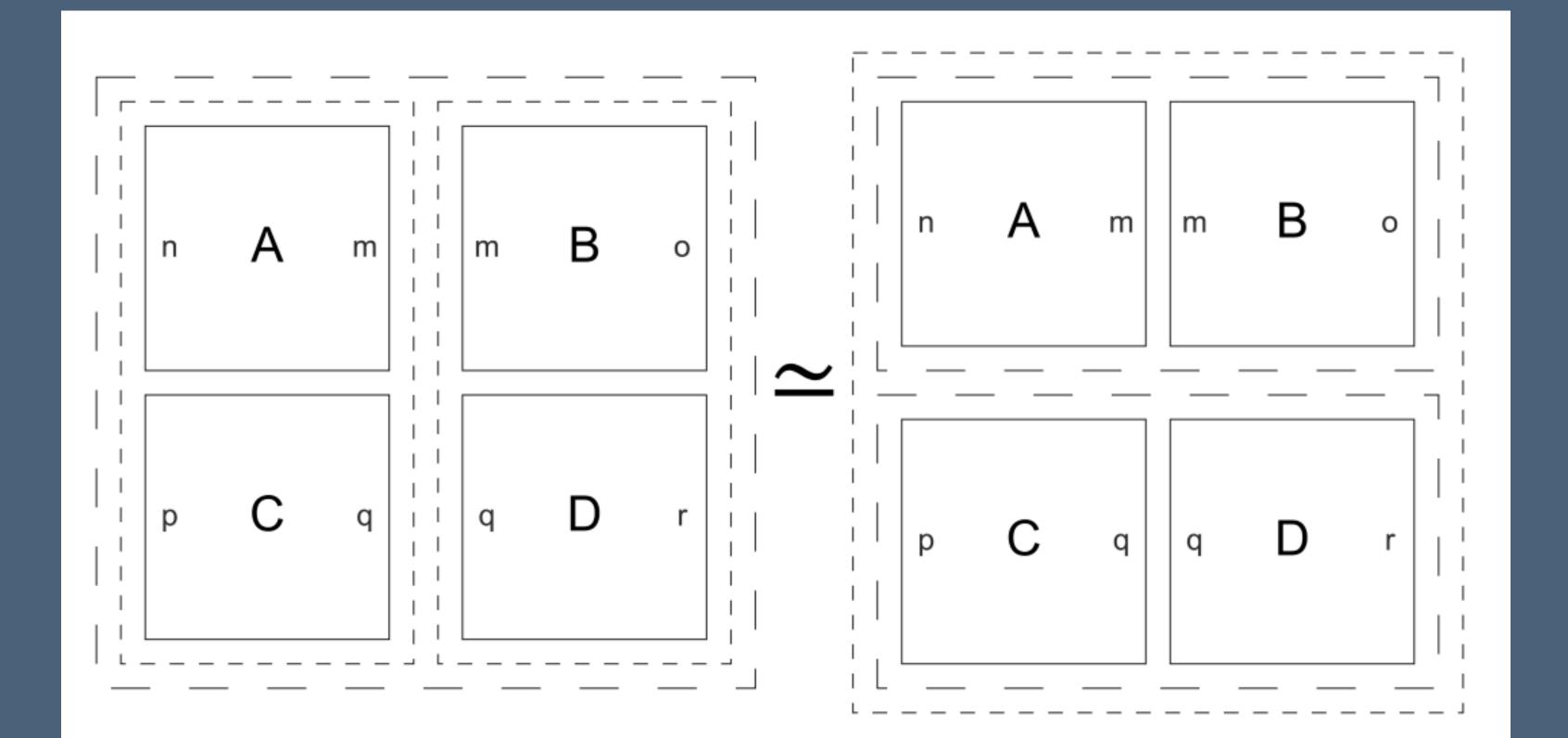
f _° g



ida



 $(id_A \circ f) \circ id_B \simeq f$



 $(A \otimes C) \times (B \otimes D) \simeq (A \times B) \otimes (C \times D)$

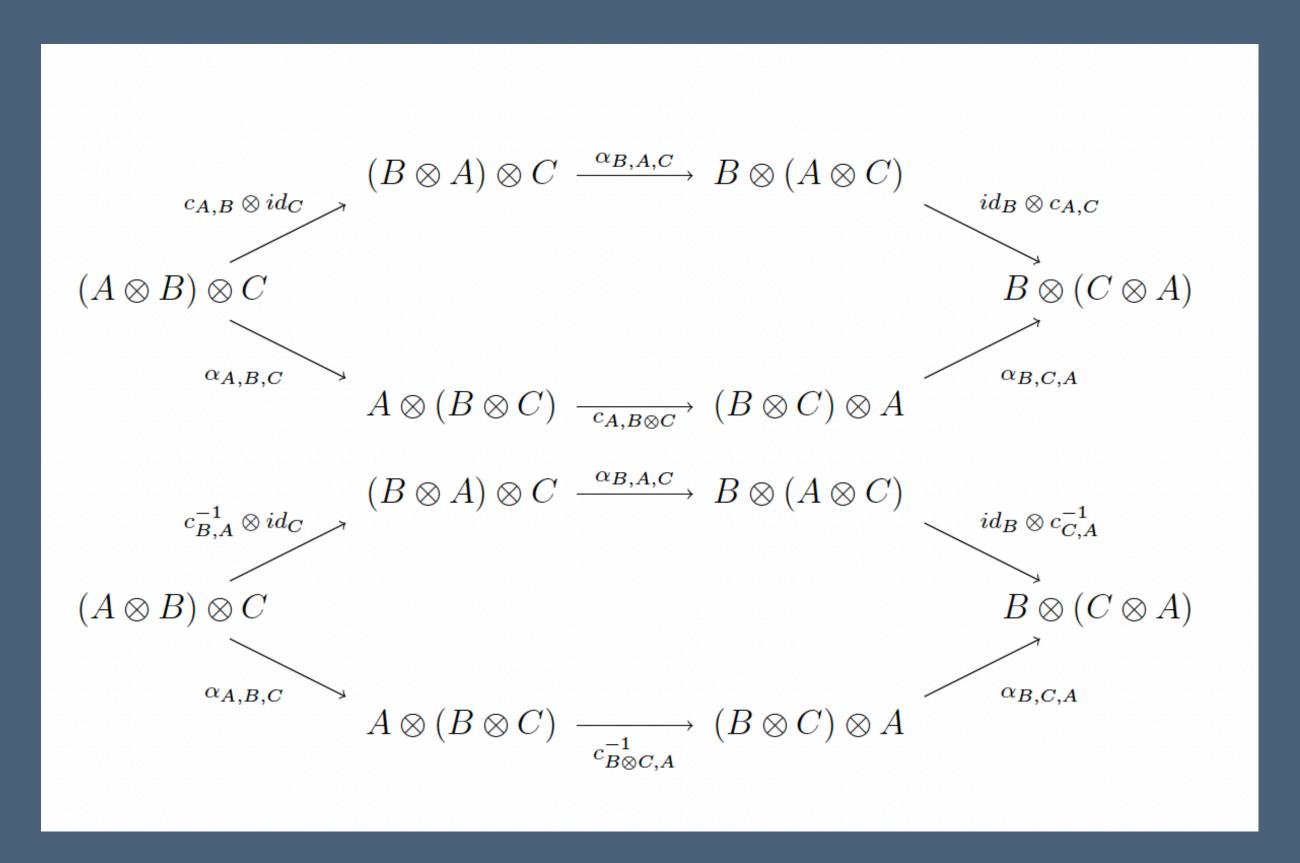
Categories get more complex.

Braided Monoidal Category

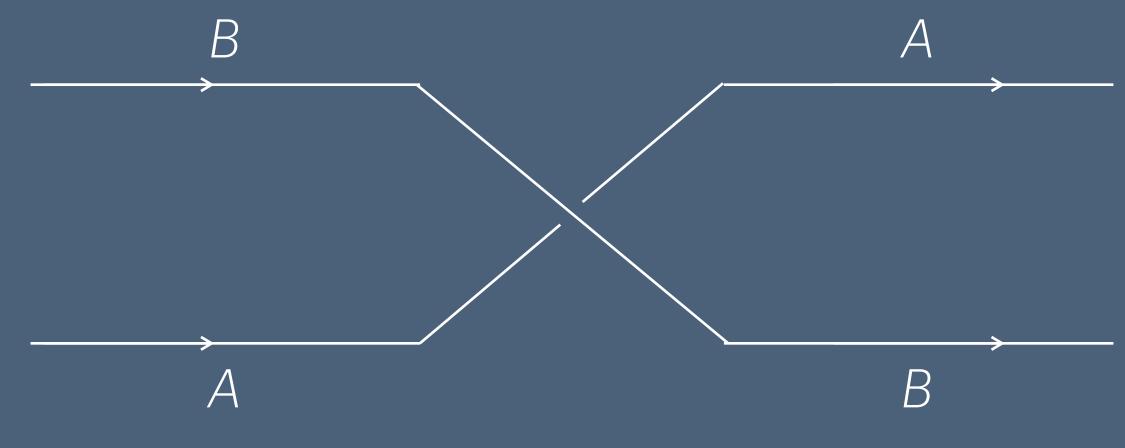
 A braiding on a monoidal category consists of a natural family of isomorphisms,

 $C_{A,B}: A \otimes B \simeq B \otimes A$

such that the diagrams on the left commute.



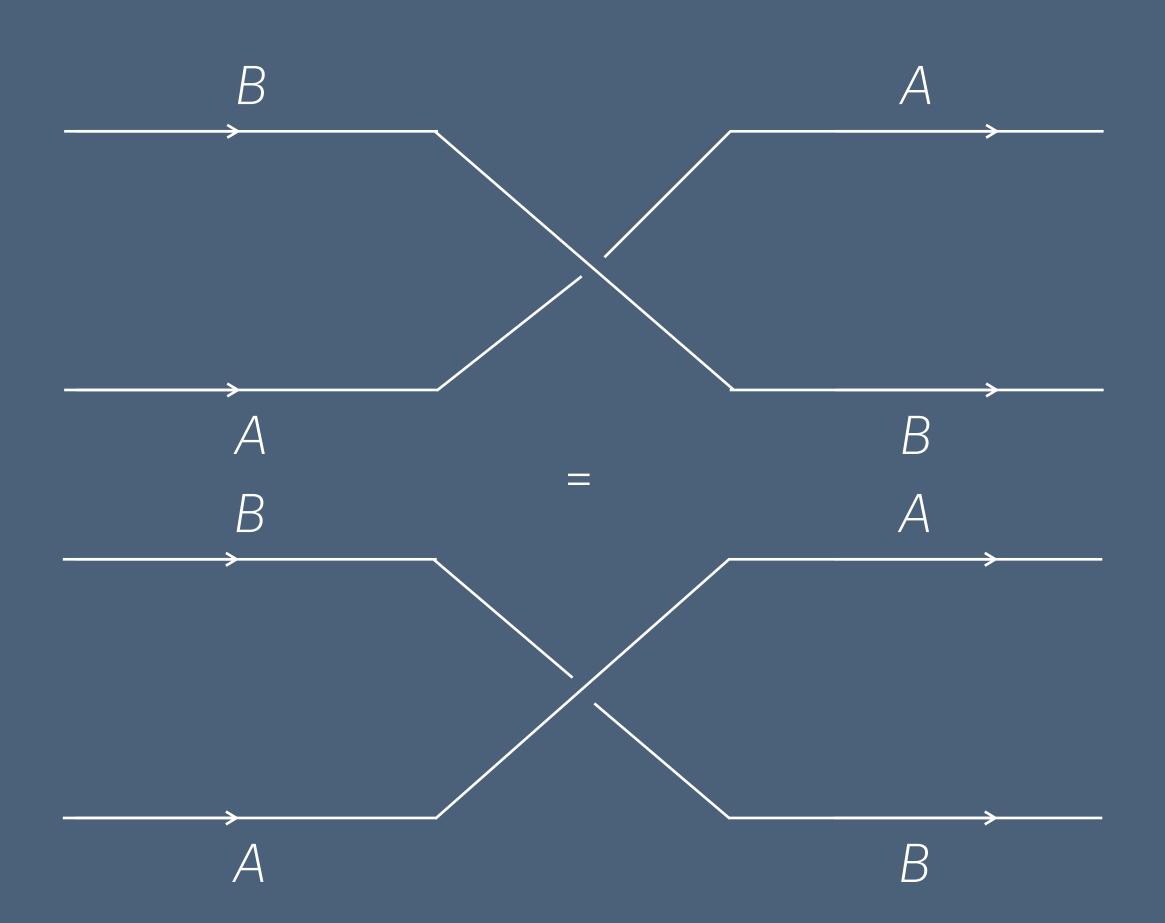
Braided Monoidal Category A В



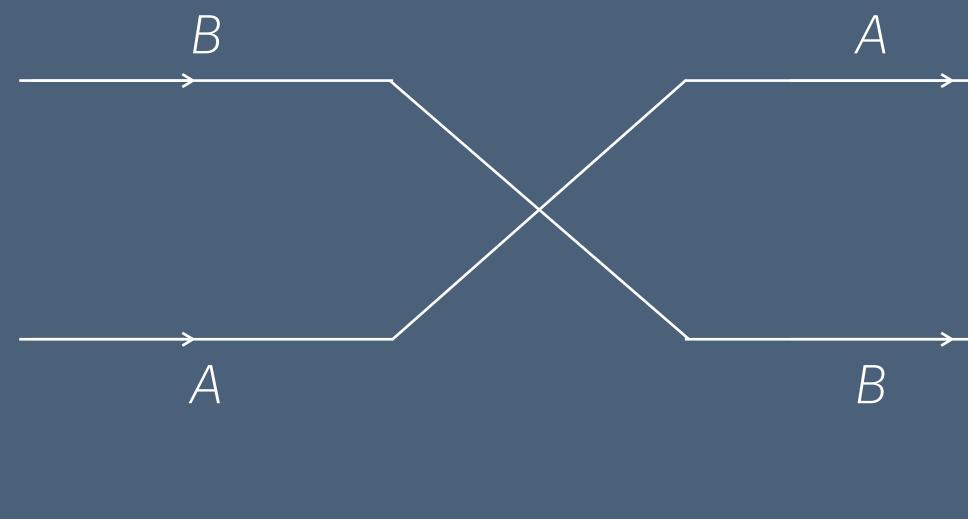
Braiding CA,B

Symmetric Monoidal Category

• A symmetric monoidal category is a braid i.e. $C_{A,B} = C^{-1}_{B,A,}$



• A symmetric monoidal category is a braided monoidal category with a self-inverse braiding,

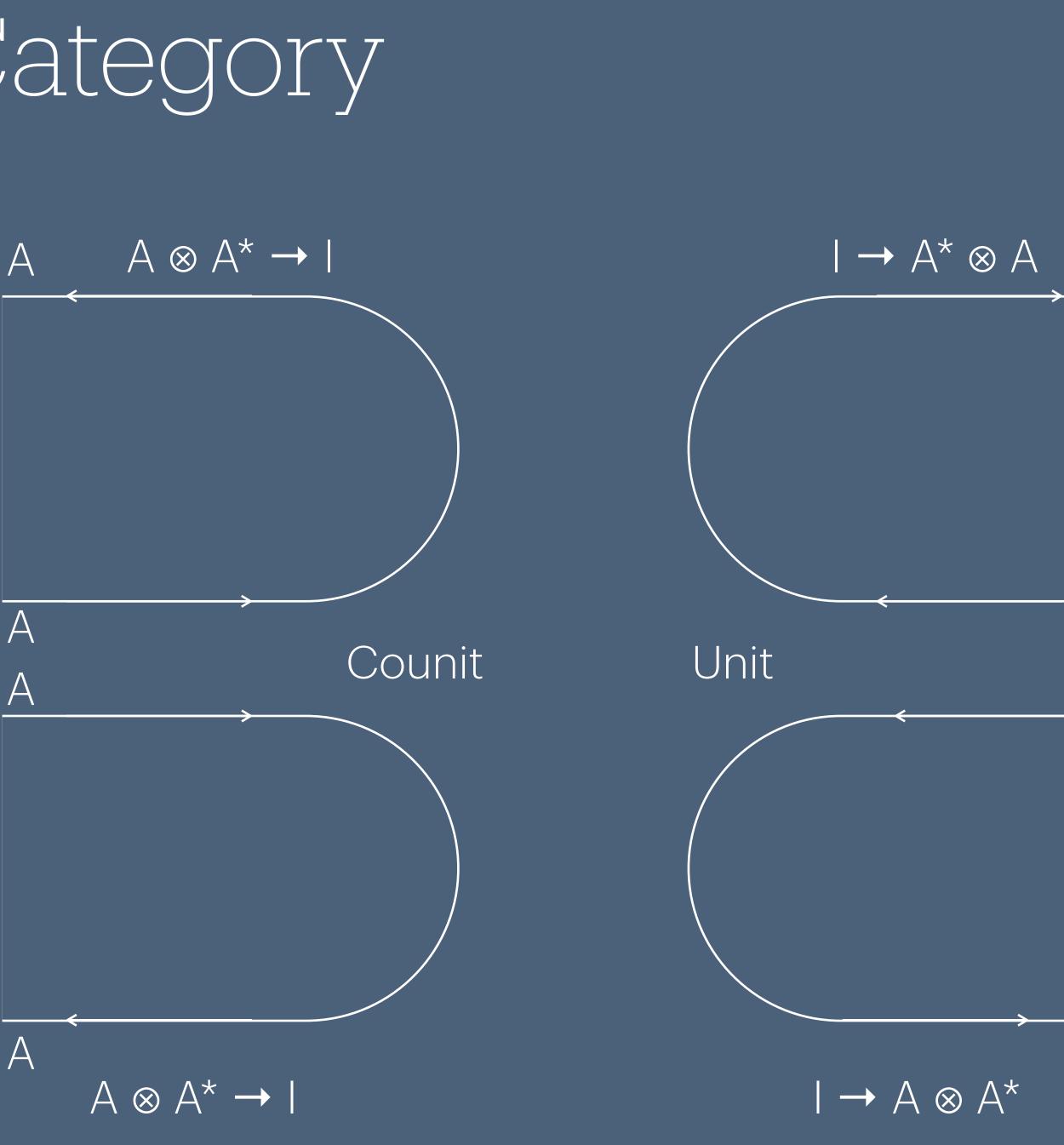


CA,B

Autonomous Category

Every object has a *dual,* A*

А



А

А

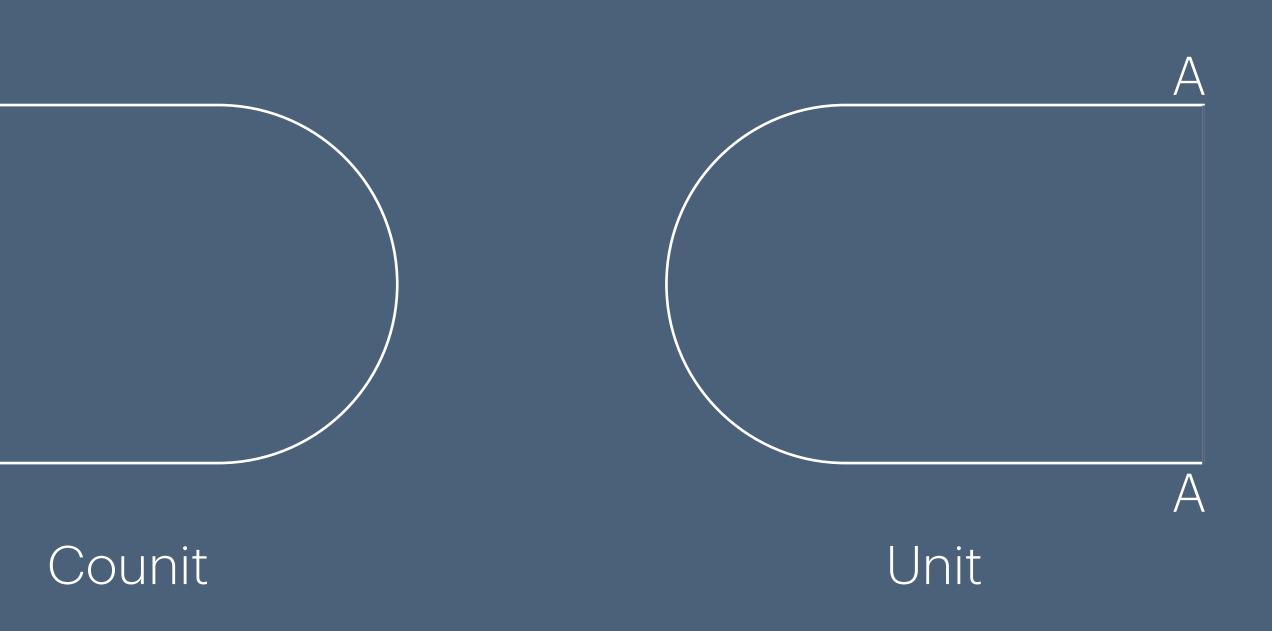
Compact Closed Category Symmetric Monoidal + Autonomous

А

А

Every object has a dual, A*

A

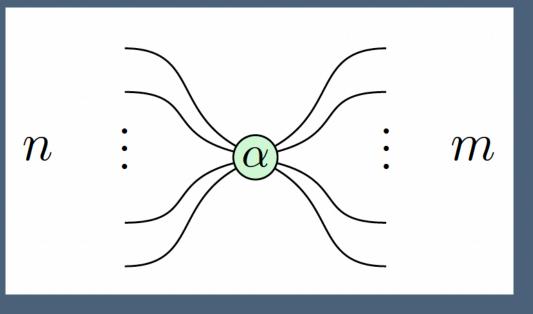


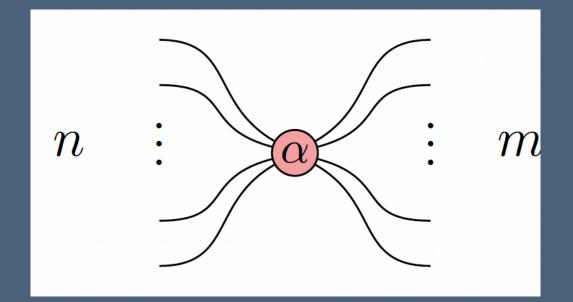
The ZX-calculus

The ZX-calculus

- representation for quantum operations.
- Consists of red and green nodes known as spiders.
- A purely diagrammatic language with semantics corresponding to complex matrices.

• A complete set of rewrite rules for the manipulation of ZX-diagrams, which are a graphical



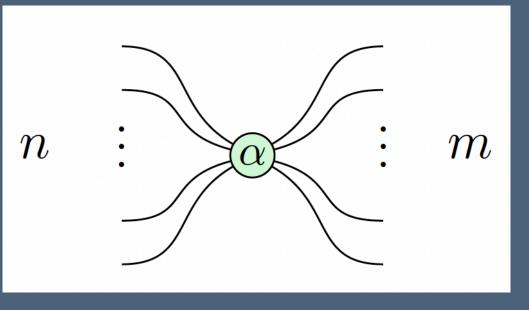


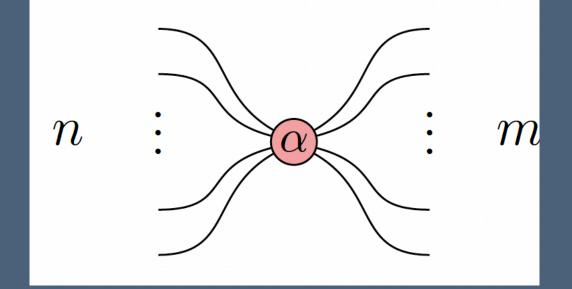
The ZX-calculus

- representation for quantum operations.
- Consists of red and green nodes known as spiders.
- A purely diagrammatic language with semantics corresponding to complex matrices.
- <u>The ZX-calculus forms a dagger compact category.</u>

Symmetric monoidal + autonomous + dagger.

• A complete set of rewrite rules for the manipulation of ZX-diagrams, which are a graphical





VyZX	Categorical Concept	Inductive Constructor	Symbol
Verify the ZX Calculus	ida	Wire	_
A Coq formalization of the ZX-calculus.		Empty	Ø
Uses inductive constructors for ZX-diagrams.	0	Compose	\leftrightarrow
$\underline{\text{in out}: \mathbb{N} \alpha: \mathbb{R}} \qquad \qquad \underline{\text{in out}: \mathbb{N} \alpha: \mathbb{R}}$	\bigotimes	Stack	\$
Z in out α : ZX in out Cap : ZX 0 2 Cup : ZX 2 0 X in out α : ZX in out $ \frac{1}{\text{Wire} : ZX 1 1} Box : ZX 1 1 Swap : ZX 2 2 Empty : ZX 0 0 $	Symmetric braid	Swap11	×
$\frac{zx_0 : ZX \text{ in mid } zx_1 : ZX \text{ mid out }}{Compose zx_0 zx_1 : ZX \text{ in out }} = \frac{zx_0 : ZX \text{ in}_0 \text{ out}_0 zx_1 : ZX \text{ in}_1 \text{ out}_1}{Stack zx_0 zx_1 : ZX (\text{in}_0 + \text{in}_1) (\text{out}_0 + \text{ out}_1)}$	Unit	Cap	C
	Counit	Cup	С

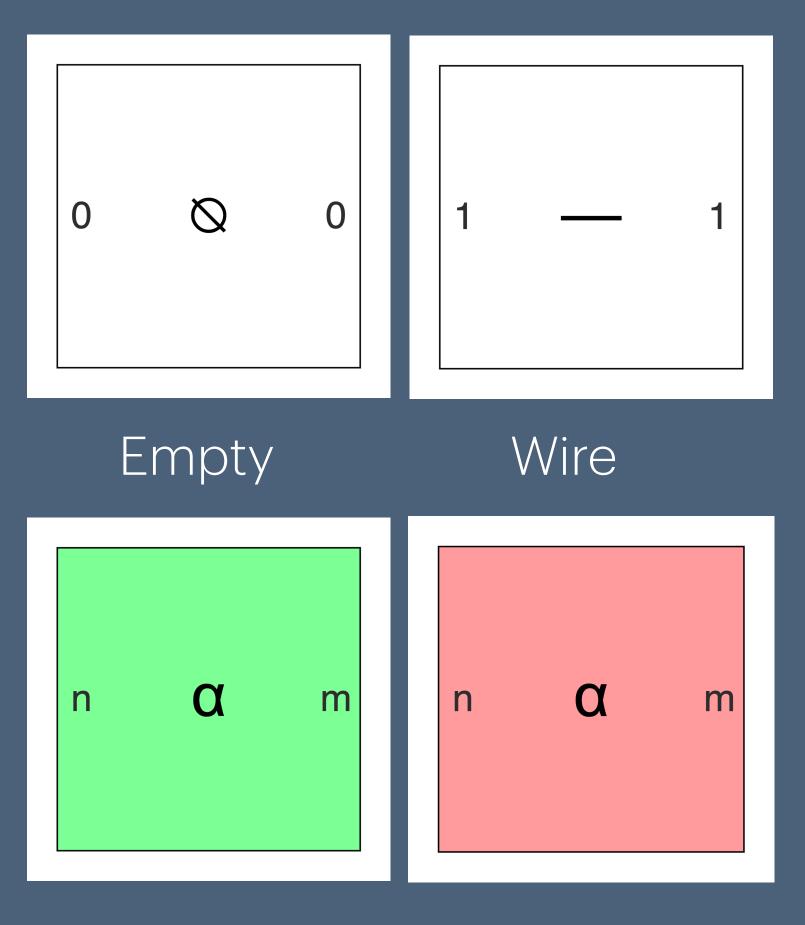
Proof assistant shenanigans Cast

- Dependently typed terms
- The type ZX 12 is not automatically equal to the type ZX 1 (1 + 1).

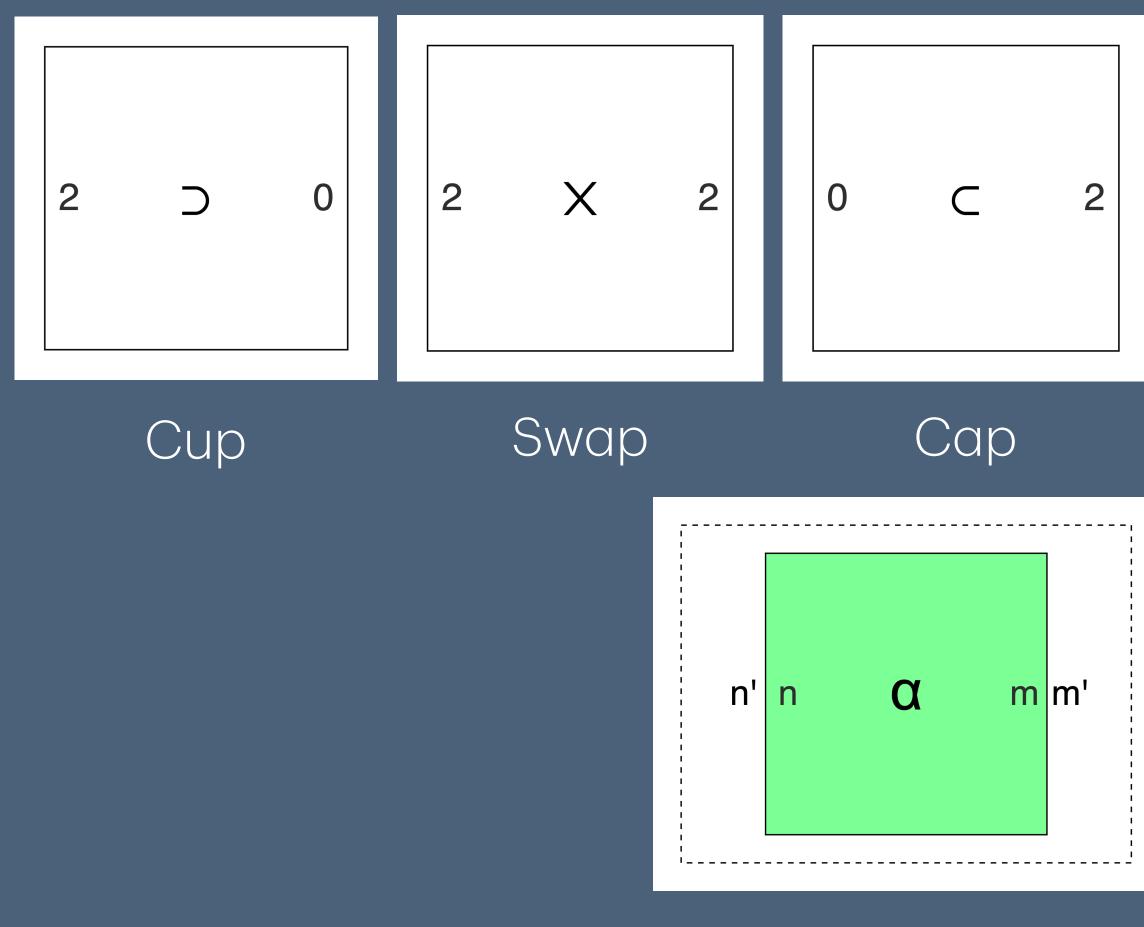
in out : \mathbb{N} α : \mathbb{R}	
Z in out α : ZX in out	Cap : ZX 0 2
Wire : ZX 1 1	Box : ZX 1 1
$zx_0 : ZX \text{ in mid} zx_1$: ZX mid out
Compose zx ₀ zx ₁ :	ZX in out

	in out : \mathbb{N} α : \mathbb{R}
$\texttt{Cup} : \texttt{ZX} \ 2 \ 0$	X in out α : ZX in out
Swap : ZX 2 2	Empty : ZX 0 0
zx ₀ : ZX in	$\mathbf{z_0} \operatorname{out}_0 \mathbf{zx_1} : \mathbf{ZX} \operatorname{in}_1 \operatorname{out}_1$
Stack zx ₀ zx	$_{1}$: ZX $(in_{0} + in_{1})$ $(out_{0} + out_{1})$

$cast(nm:\mathbb{N}) \{n'm':\mathbb{N}\} (prfn:n=n') (prfm:m=m') (zx:ZXn'm'):ZXnm.$

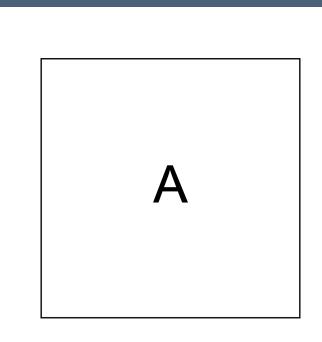


Green spider Red spider



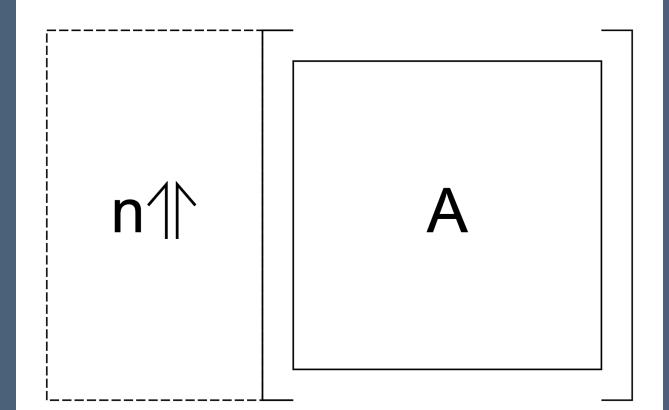
Cast

VyZX More constructors

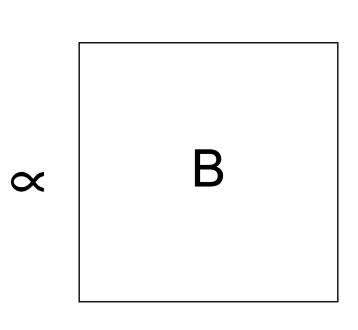


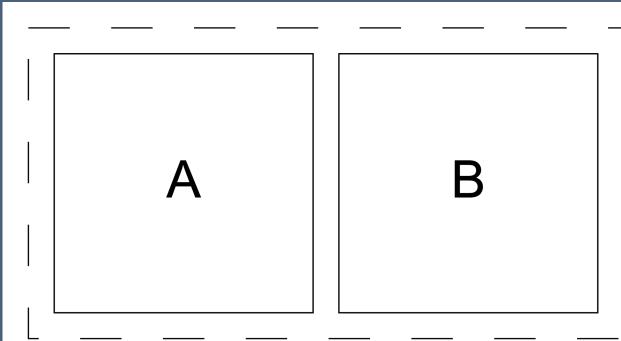
		- 1			
Ι		Ι			
I		Ι			
I		Ι			
	A	I			
	A	I			
		I			
1					
1		1			
		ı I			
Ι					
I	B	I			
Ι		Ι			
Ι		Ι			
I		Ι			
Ι		Ι			
L					

Stack (⊗)

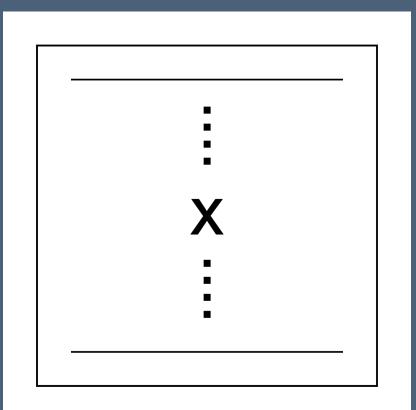


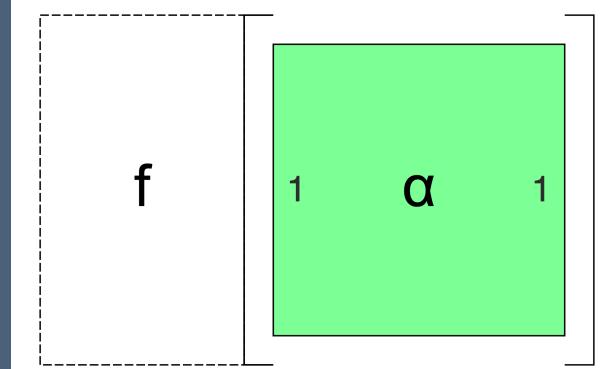
n stack, general





Compose (°)

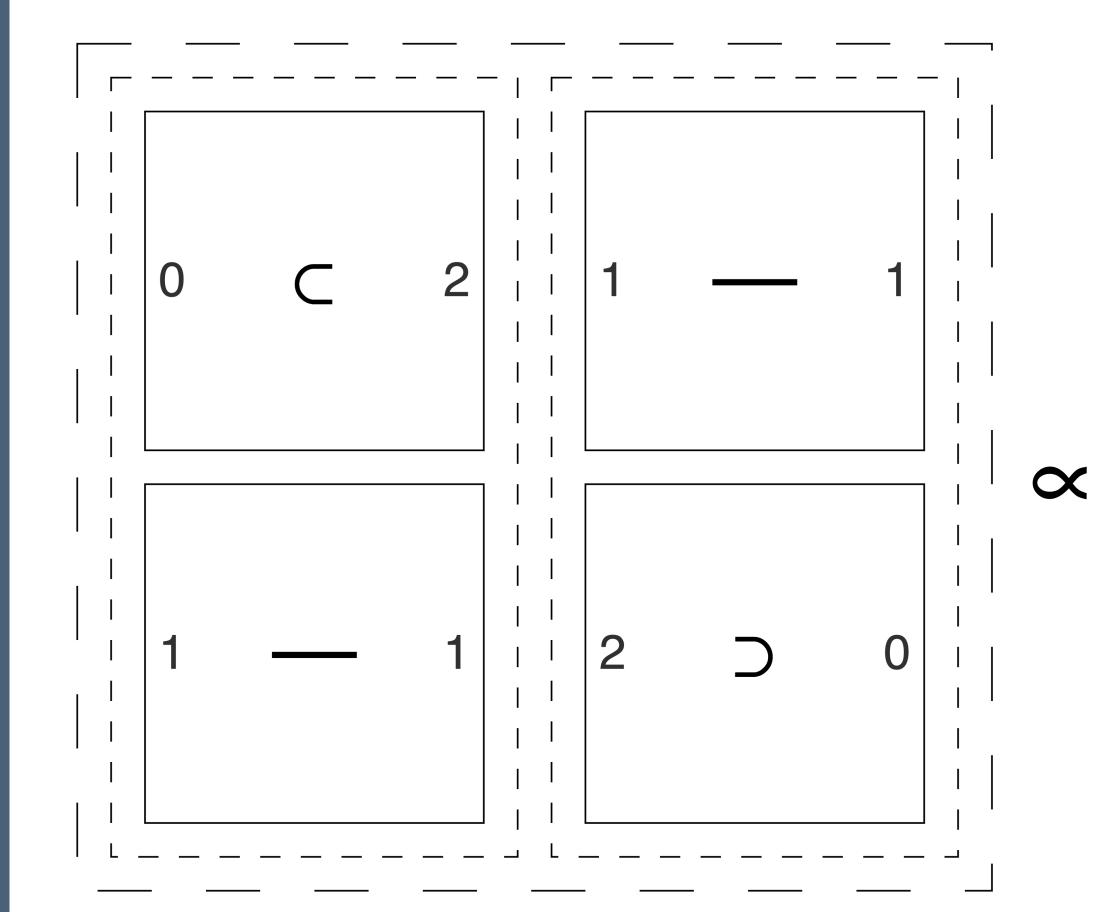


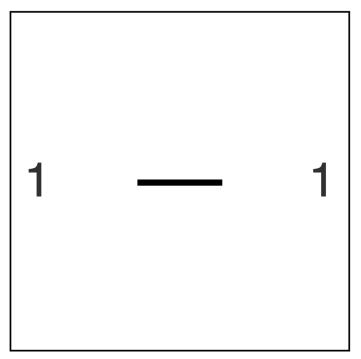


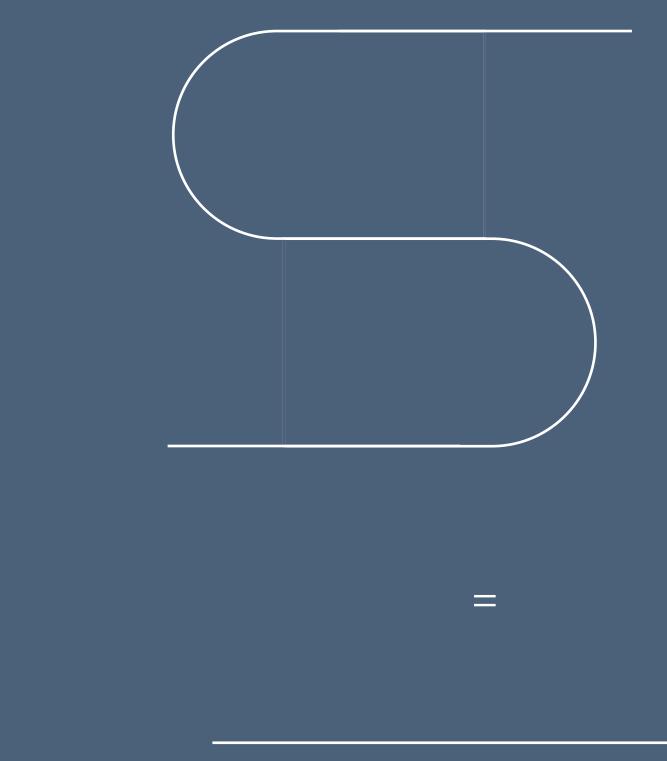
n wires stacked

Function / transform

More structure, more explicitly Foliation

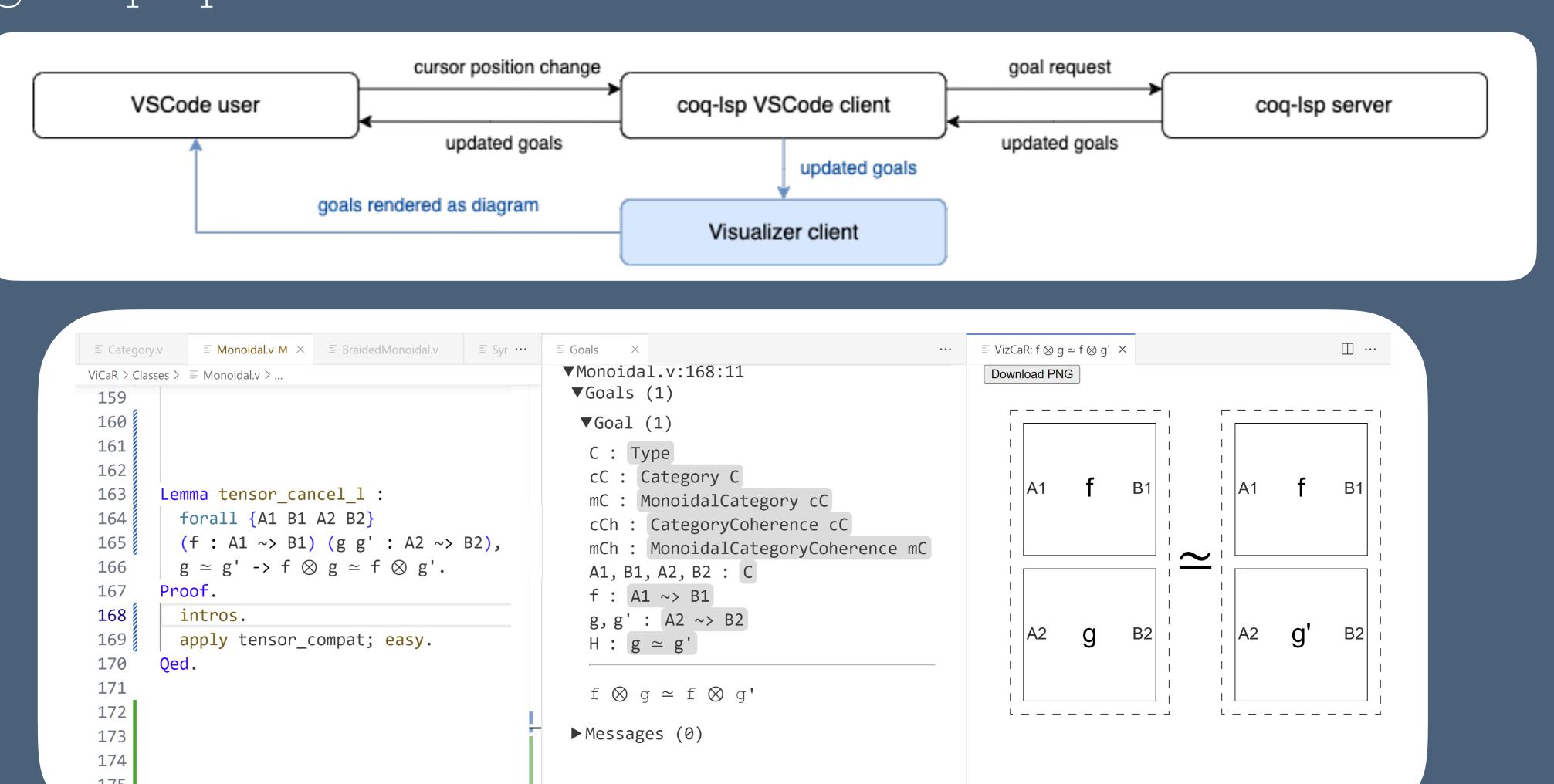






Visualization Workflow

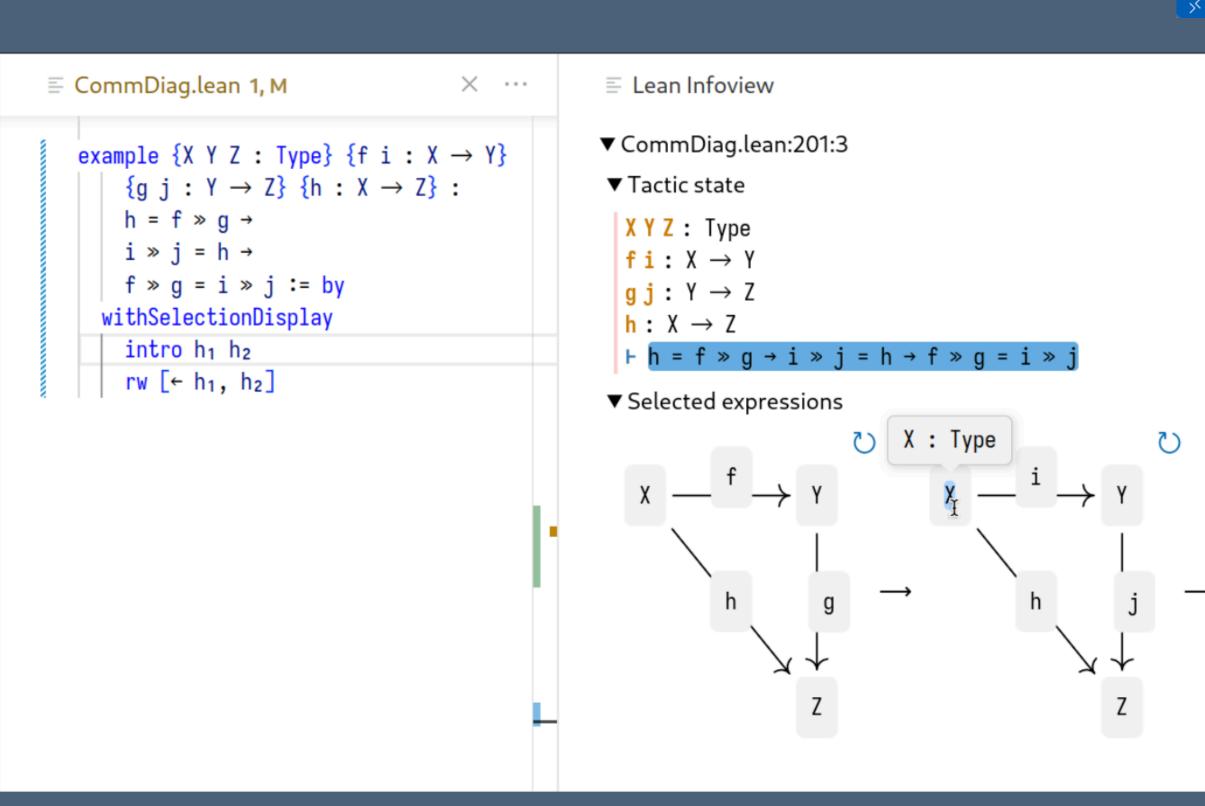
Workflow Using coq-lsp

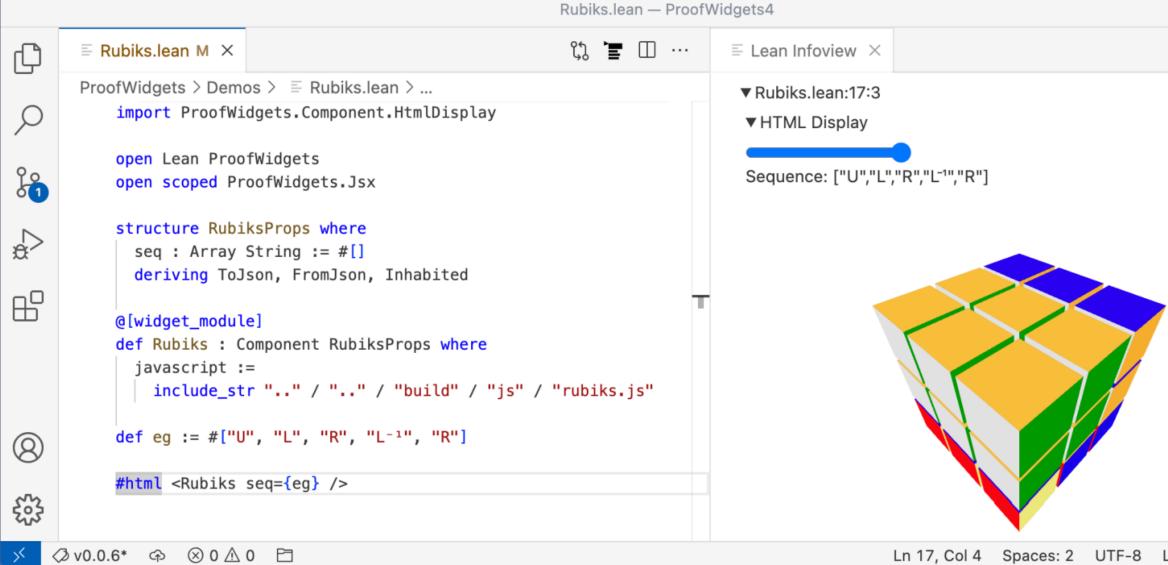


≡ Category	.v \blacksquare Monoidal.v M \times \blacksquare BraidedMonoidal.v \blacksquare Syr \cdots	\equiv Goals \times
ViCaR > Class	ses $\geq \equiv$ Monoidal.v \geq	▼Monoidal.v:16
159		▼Goals (1)
160		▼Goal (1)
161		C : Type
162		cC : Catego
163	<pre>Lemma tensor_cancel_1 :</pre>	mC : Monoid
164	<pre>forall {A1 B1 A2 B2}</pre>	cCh : Catego
165	(f : A1 ~> B1) (g g' : A2 ~> B2),	mCh : Monoi
166	$g \simeq g' \rightarrow f \otimes g \simeq f \otimes g'$.	A1, B1, A2, B
167	Proof.	f : A1 ~> B
168	intros.	g,g': A2 ~
169	apply tensor_compat; easy.	H : $g \simeq g'$
170	Qed.	
171		$f \otimes g \simeq f$
172		
173		► Messages (0)
174		
175		

Related Work

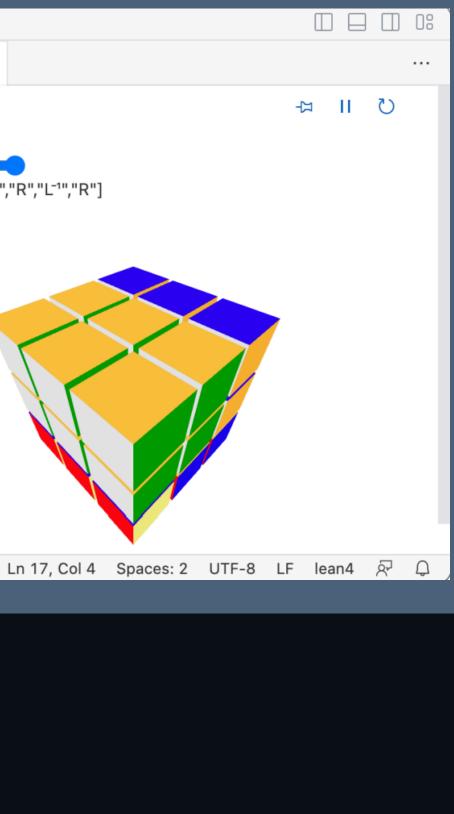
ProofWidgets Nawrocki et al.





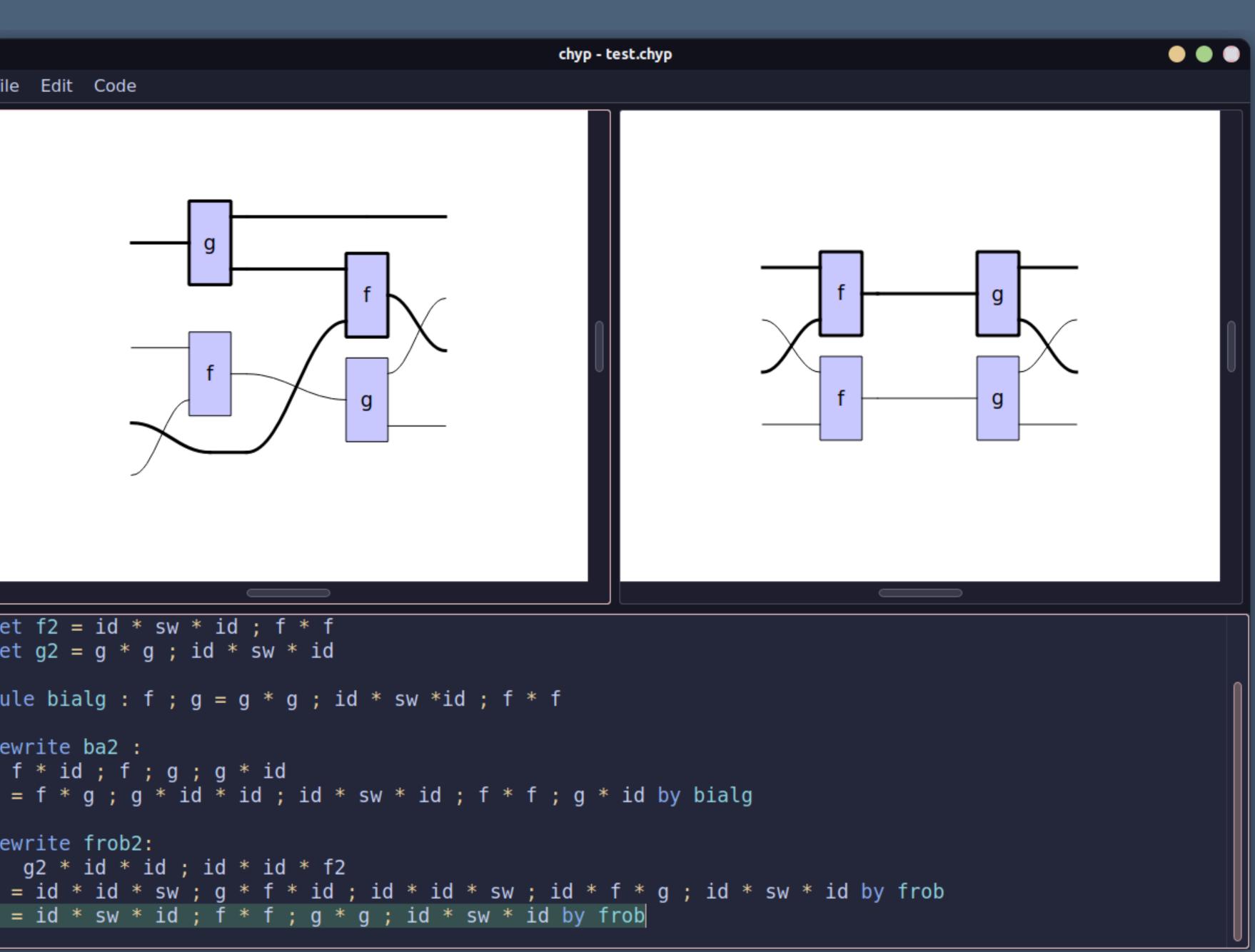
□ × … () -12 \downarrow ∇ " (۲

import ProofWidgets.Component.HtmlDisplay open Lean ProofWidgets open scoped ProofWidgets.Jsx structure RubiksProps where seq : Array String := #[] deriving ToJson, FromJson, Inhabited @[widget_module] 10 11 def Rubiks : Component RubiksProps where 12 javascript := include_str ".." / ".." / ".lake" / "build" / "js" / "rubiks.js" 13 def eg := #["L", "L", "D⁻¹", "U⁻¹", "L", "D", "D", "L", "U⁻¹", "R", "D", "F", "F", "D"] 14 15 #html <Rubiks seq={eg} /> 16



Chyp Kissinger et al.

File Edit Code g let f2 = id * sw * id ; f * f let g2 = g * g ; id * sw * id rule bialg : f ; g = g * g ; id * sw *id ; f * f rewrite ba2 : f * id ; f ; g ; g * id rewrite frob2: g2 * id * id ; id * id * f2



Future Work

Customizable visualization ViZX++

- ZX-calculus visualizer = specialized, distinct implementation,
- Intractable method for future instantiations.
- User-specified custom directives for a set of structural constructs.

Interactive visualization

- Diagrammatic rewriting, graphically
- Bidirectional text/graphic system

Conclusion

Conclusion Proof Visualization for Graphical Structures

- A methodology for working with graphical constructs in a proof assistant,
- An implementation of visualizations for the graphical language of string diagrams associated with classes of categories,
- An instantiation for the ZX-calculus, a symmetric monodical autonomous category,
- An integration with the proof assistant Coq.