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The average programming language researcher holds the opinion that syntax is the least important part of a
programming language. The average programmer disagrees. The syntax of a functional, dependently typed
programming language differs significantly from that of a typical imperative language. As a part of our goal to
develop a dependent type theory and programming language tailored to imperative programmers, we wish to
explore the impact of syntax on comprehensibility and usability of a dependently typed language, specifically
for experienced imperative programmers. To this end, we develop a prototypical imperative syntax that can be
transformed into an existing dependently typed language, Idris. We develop several transformation algorithms
to take imperative constructs such as loops and statements from this syntax to terms that typecheck in Idris,
allowing programs to be executed within Idris’s ecosystem. We also develop an algorithm to automatically
derive decidable equality instances for custom types, enabling dependent elimination with no additional effort
from the programmer. As future work, we aim to conduct a formal user study to evaluate the effectiveness of
this syntax for our purposes.

CCS Concepts: • Software and its engineering → General programming languages; • Social and
professional topics→ History of programming languages.
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1 INTRODUCTION
In the space of programming languages, principled user studies are quite uncommon [Stefik and
Hanenberg 2017]. In a study by Ko et al., an analysis of 1701 papers published at top software
engineering conferences over a period of 10 years revealed that while 1392 (81%) of these papers
involved some form of software engineering ”tool”, the number of controlled studies with human
participants was just 44. Often the humans using the tool are the authors of the papers themselves,
and the results of such studies are obviously subject to significant biases.

While several factors contribute to the usability of a programming language, we would like
to highlight syntax. Stefik and Siebert conducted a formal study of the features of programming
language syntax. While their work itself was focused on novice programmers, their study partici-
pants consisted of both programmers and non-programmers, and useful conclusions can be drawn
that generalize to experienced programmers. In particular, one of the findings we would like to
highlight is the (perhaps seemingly obvious) fact that as programmers gain experience, they rate
familiar syntax higher. While we were unable to find formal studies in this space, it is clear that
the functional style of programming usually adapted by most dependently typed languages differs
significantly from the imperative style of programming used in most mainstream languages. It is
colloquially well accepted that the learning curve for dependently typed programming languages
is quite high. It seems reasonable to postulate that unfamiliar syntax plays a role in making depen-
dently typed languages harder to learn, especially for experienced programmers. The question is,
how much?
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We hypothesise that imperative syntax for a dependent type theory can enhance the usability of
dependent types for an experienced programmer. In other words, simply altering surface syntax
without changing the core type theory of an existing dependently typed language can lead to a
more usable language for experienced imperative programmers not familiar with dependently
typed programming.

We develop a syntax resembling a medley of syntactic features seen in “mainstream” imperative
programming features, namely C++, Java, and Python. This syntax is ”compiled” to code in Idris us-
ing simple syntactic transformations for features that exist in Idris, and algorithmic transformations
for features that do not. In particular, we develop a methodology for transformation of boolean
statements into their propositional equivalents to enable dependent elimination via case analysis.
We also develop an algorithm for automated derivation of decidable equality for user-defined types.
Our eventual goal is to conduct a formal study surveying experienced imperative programmers on
the usability of this syntax, using methodology detailed by Coblenz et al. Having a fully-functional
and expressive typechecker allows for interactivity within such a study, as dependently typed
programming is, after all, an interactive discipline.

2 SYNTAX
Even before we get to features of dependently typed programming, we must tackle non-dependent,
functional features that sit at the foundations of dependent types. Plenty of “mainstream” imperative
languages have a type system. A lot of them have type systems that are quite complex and expressive,
but they follow the imperative programming paradigm rather than the functional one. This means
that familiar concepts such as algebraic data types and pattern matching may not look exactly as
they do in functional programming languages, but exist in spirit in a style adapted to the imperative
style of the language they exist in. For example, there is an existing repository of emulations of
algebraic data types in a variety of languages [Wikipedia contributors 2024]. With the aim of
designing a syntax loosely familiar for “most” imperative programmers, we looked at three popular
languages: Java, Python, and C++. All these languages have constructs to emulate some subset of
algebraic data types. We discuss these features below, with an example definition of a List type in
each language in Table 1.

While Python supports generics, for brevity, we define a non-polymorphic list, using dataclasses
and tagged unions. Similarly, in C++, we exclude templates and define a non-polymorphic list
using structs and variants. Since Java is an object-oriented language, it has always had support for
“ADT-like” structures using class hierarchies and objects. However, practically using these design
patterns is tedious, error-prone, and verbose [Smith 2025]. Newer features added to Java allow for
a much cleaner implementation of ADTs, using sealed interfaces [Goetz 2019] and records.

While both Python andC++ declare the type constructors and the type itself in separate constructs,
Java declares the constructors definitionally within the type (or interface), and we believe this is a
better representation for data-type declarations. As such, we adapt a syntax loosely representing
Java, specifically for data types.

We now give the syntactic definitions of the features in our language. A program consists of a
list of imports, followed by type and function declarations.

i // Imports

...

i

td | rd | f // declarations

...

td | rd | f
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Table 1. A definition of a List type in different languages.

Python

@dataclass

class Nil:

pass

@dataclass

class Cons:

head: int

tail: List

List = Nil | Cons

C++
struct Nil final {};

struct Cons final {

int head;

std::unique_ptr <std::variant <Nil , Cons >> tail;

};

using List = std::variant <Nil , Cons >;

Java
sealed interface List <T> {

record Nil <T>() implements List <T> {}

record Cons <T>(T head , List <T> tail)

implements List <T> {}

}

Imports are libraries in Idris that must be imported to use built-in types and functions.
import Library.Module // as in Idris

Types, constructors, and functions may take implicit and explicit named arguments, enclosed in
angle brackets (inspired by generics in Java and C++) and parentheses. We use the traditional curly
brace syntax as seen in Java and C++ for scoping purposes.

td := type tname <t v,...,t v>(t v,...,t v) {

constructor c<t v,...,t v>(t v,...,t v)

of tname <e,...,e>(e,...,e);

...

constructor c<t v,...,t v>(t v,...,t v)

of tname <e,...,e>(e,...,e);

}

rd := record rname <t v,...,t v>(t v,...,t v) {

t v;

...

t v;

}

f := func fname <t v,...,t v>(t v,...,t v) of t { s }

Function bodies are statements. A statement is one of the following: declaration and assignment of
a variable, assignment to a (pre-defined) variable, return, skip (;;), list of statements, if or eif
(essentially eliminator constructs, explained in detail in Section 3) blocks, switch-case, while (or
ewhile for elimination, explained in Section 3) loop. With the exception of eif and ewhile, these
are all constructs commonly found in imperative programming languages, so their purpose should
be self-explanatory.

s := let t v = e; | v = e; | return e; | ;;
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| s

...

s

| if (e) { s } else { s } | eif (e) { s } else { s }

| switch (e,...,e){

case (e,...,e) { s }

...

case (e,...,e) { s }

default { s } // optionally

}

| while (e) { s } | ewhile (e) { s }

Terms are distinct from statements: one can think of terms as constructs that are close to identical
in functional and imperative languages. A term can be one of the following: type, variable, function
application, function, natural number, boolean, unit, fully applied constructor, sum of two terms,
wildcard, boolean equality or inequality of two terms, boolean negation of a term, boolean union
and disjunction, and if-else, as a term. We make a distinction between if-else statements and terms
semantically, but they have the same syntax.

e := t | v | e(e,...,e) | f | n | b | () | c(e,...,e) | e + e | _

| e == e | e < e | ! e | e && e | e || e | if (e) { e } else { e }

b := True | False

n := 0,1,2...

Any types defined in Idris can be used in the surface language by simply using surface syntax:
so a type such as Vect n t in Idris is simply represented as Vect(n, t), using the traditional
imperative function call syntax. Technically this means we do not need to have special syntactic
constructs for any predefined types at all, but for convenience we add a few types, including Ty,
representing Type in Idris.

t := Nat | Bool | Unit | Func(t v,...,t v => t) | Ty | tname(e,...,e)

We now give a few examples of transformations from the surface language to Idris in Table 2. We
only show the more trivial transformations here, saving the algorithmic transforms for section 3.
Type declarations in the surface language differ purely syntactically from Idris. We incorporate
some very specific transforms for common patterns to enable easier typechecking in Idris: for
example, terms of the form 1 + e are transformed into S e. The surface language makes use
of switch-case syntax for pattern matching, which is translated into the pattern matching case
statements in Idris. Variable re-assignment is simply emulated using existing variable shadowing.
If statements followed by additional tail statements are transformed into if statements with each
branch containing the tail, and the same applies for switch-case statements followed by additional
tail statements.

Table 2. Example programs in the surface language and their (mostly trivial) translations to Idris.

Surface Language Idris
type Vect(Nat n, Ty t) {

constructor Nil() of Vect(0, t);

constructor Cons(t head ,

Vect(n, t) tail)

of Vect (1+n, t);

}

data Vect : (n : Nat) -> (t : Type)

-> Type where

Nil : Vect 0 t

Cons : (head : t) -> (tail : Vect n t)

-> Vect (S n) t
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func replicate <Ty t>(t x, Nat n)

of Vect(t, n) {

switch(n) {

case (0) {return Nil;}

case (S(n)) {

return Cons (x, replicate(x,n));

}}}

replicate : {t : Type} -> t -> Nat

-> Vect t n

replicate x n = case (n) of

0 => Nil

S n => Cons x (replicate x n)

func varManip (Nat x, Nat y) of Nat {

let Nat z = x + y;

if (z < 10) {

z = z + 10;

} else {

z = z + 1;

}

z = z + x;

return z;

}

varManip : Nat -> Nat -> Nat

varManip x y =

let z : Nat = (x + y) in

if (z < 10) then

let z : Nat = (z + 10) in

let z : Nat = (z + x) in

z

else

let z : Nat = (z + 1) in

let z : Nat = (z + x) in

z

None of these transformations are particularly complex. The real transformations come when
we bring loops into play. The next sections explore the non-trivial transforms applied to go from
the surface language to Idris.

3 TRANSFORMATION OFWHILE LOOPS
While the surface language has while loops, Idris does not. It is not sufficient to simply transform
the loop: one must account for the surrounding context, as the loop is not guaranteed to be the
toplevel construct in a function. For simplicity, we assume the function body is a (non-empty) list
of statements; it is easy to convert single statement bodies into a singleton list.

We define a recursive algorithm to convert a list of statements into a term in Idris, along with
required helper declarations. The idea is to add these helper declarations to a where clause in the
toplevel function containing the statement list. We recursively add any new variables defined to a
list of header variables, obeying block scoping rules for variable definition. For a while loop in the
form below,
func f(t1 v1 ,...,t= v=) of rt {

head

while(condition) {

body

}

tail

}

It is transformed into a function with a recursive helper, as seen below.
func f(t1 v1 ,...,t= v=) of t {

head

frec(v_1 ,...,t= v= , vℎ1 ,...,vℎ= )

}

where

func frec(t1 v1 ,...t= v= , tℎ1 vℎ1 , . . . , tℎ= vℎ= ) of t {

if(condition) {
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body

frec(v1 ,...,t= v= , vℎ1 ,...,vℎ= )

} else {

tail

}

}

We are a bit loose with our definition of the function header, as the while loop may be within a
nested statement; we assume the header text remains untouched. The recursive function generated
is passed the original function parameters, along with any variables defined in the header. In the
case of conditional branches in the header, a distinct recursive helper is generated for each branch,
as the function signature changes based on what variables are defined in the header. We transform
the while loop into a simple if statement. The positive branch of the if contains a recursive call to the
helper appended to the original loop body. The negative branch contains the tail statements from
the original function. This simple transformation works for any nested combination of statements,
including nested and sequential loops, and loops in conditional branches.

This works well, but in a dependently typed setting, we need more. Conditional branches may
need to be interpreted as refinements on the type of a value, to enable dependent elimination to
satisfy typechecker constraints. Such a branch on a boolean does not yield dependent elimination,
and to get transformed programs to typecheck as easily as possible, we must enter the land of
propositions. We explore this in the next section.

4 ENABLING DEPENDENT PATTERN ELIMINATION
Since our goal is for our surface syntax to resemble a familiar imperative language, we must try to
handle dependent type shenanigans under the hood wherever possible. We offer a limited solution
for types with decidable equality: boolean equality checks are transformed into propositional ones,
and if statements are transformed into case statements. This enables the body of the branch to
utilise the proof of equality in its statements, and because of Idris’ elaborate elaboration, often
auto-implicitly supplies proofs to the terms that need them.

Not all conditional statements require such a transform: sometimes, booleans are just booleans.
We use different keywords for loops and conditional statements to indicate when such a transform
is to be applied: ewhile and eif. The surface language supports boolean equality and inequality,
however transformations are only semantically valid in Idris if DecEq instantiations of the type
exist. We also include a translation from boolean to propositional inequalities of natural numbers
for simplicity, and because the required instantiations exist in the Idris standard library.

5 DERIVING DECIDABLE EQUALITY FOR CUSTOM TYPES
Since the use of custom user-defined types is more than likely, we also develop an algorithm for
automated derivation of decidable equality instances for any types defined. We give an example for
the standard Vect type, as defined in Table 2 — the definition in the surface language automatically
generates this instance along with the translated type declaration in Idris. This allows users to
write arbitrary types and get dependent elimination, as seen above, for free.

{n : Nat} -> {t : Type} -> (DecEq t) => DecEq (Vect n t) where

decEq Nil Nil = Yes Refl

decEq (Cons h1 t1) (Cons h2 t2) with (decEq h1 h2)

decEq (Cons h1 t1) (Cons h1 t2) | Yes Refl with (decEq t1 t2)

decEq (Cons h1 t1) (Cons h1 t1) | Yes Refl | Yes Refl = Yes Refl

decEq (Cons h1 t1) (Cons h1 t2) | Yes Refl | No prf = No (\h =>

prf (case h of Refl => Refl))
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decEq (Cons h1 t1) (Cons h2 t2) | No prf = No (\h =>

prf (case h of Refl => Refl))

We determine the necessary constraints based on the type parameters. Constraints for type
families are constructed accordingly: an example can be seen below. We add all type parameters as
implicit arguments to the instance, to assist the typechecker.

data DPair : (a : Type) -> (p : (x : a) -> Type) -> Type where

MkDPair : (x : a) -> (y : (p x)) -> DPair a p

{a : Type} -> {p : (x : a) -> Type} -> (DecEq a, (x : a) -> DecEq (p x))

=> DecEq (DPair a p) where

...

The argument cases for the decEq function are generated by taking the cartesian product of
constructors, and then throwing out pairs of constructors that have definitionally unequal types.
For example, in the Vector example, there are no cases for decEq Nil Cons and decEq Cons Nil

because they do not have the same type. Note that this means constructors with definitionally
unequal but semantically unifiable types will not have cases generated: this is something we wish
to fix in future work that is able to leverage the type system of Idris during translation. We pattern
match on the decidable equality of constructor arguments recursively, giving the appropriate proof
for each branch. Constructor arguments that appear in the type are skipped — in the case of the
Singleton type, the argument is not pattern matched on: equality of types implies equality of
values.

6 EXAMPLE: LINEAR SEARCH THROUGH A VECTOR
We now demonstrate an example of a program utilizing the all features and transforms described
above. Consider a linear search for a value x through a Vect of length n, as in Listing 7. While it is
possible to use our custom defined Vect if we define an index function (which is straightforward),
we simply use the Idris defined type Vect with a defined index function for brevity. The function
either returns Nothing if the value is not found, or some index guaranteed to be within the bounds
of the vector (using the Fin type) if it succeeds. This is transformed into the program in Listing 8.
Because of the use of the eif and ewhile keywords, both boolean conditionals are transformed
into propositional statements, and we match on the constructors of the Dec type. Note that we must
still specify a conversion from Nat to Fin in the surface language, but the proof that the conversion
function requires must not be specified: Idris will fill it in from the context because of the explicit
pattern match.

import Decidable.Equality

import Data.Vect

func search (Nat n, Vect(n, Nat) ls, Nat x) of Maybe(Fin(n)) {

let Nat i = 0;

let Maybe(Fin(n)) ret = Nothing;

ewhile(i < n) {

eif (index(natToFinLT(i), ls) == x) {

ret = Just(natToFinLT(i));

}

else {;;}

i = 1 + i;

}

return ret;
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}

Listing 7. Linear search through a Vect in the surface language

import Decidable.Equality

import Data.Vect

search : (n : Nat) -> (ls : Vect n Nat) -> (x : Nat) -> Maybe (Fin n)

search n ls x =

let i : Nat = 0 in

let ret : Maybe (Fin n) = (Nothing) in

(search_rec0 n ls x i ret)

where

search_rec0 : (n : Nat) -> (ls : Vect n Nat) -> (x : Nat) -> (i : Nat)

-> (ret : Maybe (Fin n)) -> Maybe (Fin n)

search_rec0 n ls x i ret =

(case (isLT i n) of

(No noprf) => ret

Yes yesprf => (case (decEq (index (natToFinLT i) ls) x) of

No noprf => let i : Nat = (S i) in

(search_rec0 n ls x i ret)

Yes yesprf => let ret : Maybe (Fin n) = Just (natToFinLT i) in

let i : Nat = S i in

search_rec0 n ls x i ret))

Listing 8. Linear search through a Vect, translated to Idris

7 CONCLUSION
While naïve transformations of imperative features using primarily syntactic constructs have some
promising results, it is clear that for true, non-trivial usability, the development of a specialized
type system is required. For example, the simulation of mutability without actual mutability is
quite pointless if one is truly trying to mutate variables in-place. Since this is something that
fundamentally clashes with the underlying type-system, it is simply not achievable through pure
syntax.

Another consideration is that these are all programs that “just work”: most programmers will, at
some point, write code that does not compile. In those cases, error messages may be even more
incomprehensible than those one would encounter while writing Idris code by hand, simply due to
the “unnatural” code generated by algorithmic transformation. Comprehensibility of error messages
is known to be an important factor in the usability of programming languages, and one of the
biggest factors when dealing with dependently typed languages [Juhosova et al. 2025]. It is also not
contested that dependently typed programming languages are associated with some particularly
nasty error messages, particularly during type-checking and unification. One common problem
is associated with definitional equality of types. Indeed, ”error messages that result from failures
of definitional equality are not always very easy to understand, because they may be phrased in
terms of the internals of functions” [Christiansen 2023].

These observations make it clear that just introducing syntax is not remotely enough — significant
semantic developments need to be made at the type-theoretic level to build a truly usable language
with these features. However, for our purpose of studying syntax, we believe the limited space of
reading and executing correct programs is enough, and our developed syntax fulfills its purpose.
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We designed an imperative-style syntax for an existing dependently typed language, Idris. The
purpose of this experiment is not to create a usable language, rather to create a potential candidate
for a usable syntax that can be used for a language more type-theoretically suited to imperative
programming. Semantics are important, but syntax is too — and this direction of work aims to
explore the syntactic considerations associated with designing a dependently typed language with
imperative features. We aim to investigate our hypotheses about the usability of such a syntax with
this minimal prototype, intended as a contained environment for a comprehensibility user study.
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