
Integrating Dependency Building with Document
Checking in Coq

Emilio Jesús Gallego Arias

Université Paris Cité, CNRS, Inria, IRIF, F-75013

Paris, France

emilio-jesus.gallego-arias@inria.fr

Bhakti Shah

University of Chicago

Chicago, USA

bhaktishah@uchicago.edu

Recent years have seen a trend towards more integrated

tooling in programming environments. For example, Rust’s

Salsa [2] combines the Rust compiler with an incremental

build system in order to provide a query-based reactive archi-

tecture that language servers and tools can build on. In this

abstract, we explore the integration of a build system with

coq-lsp [1], an incremental document checking system for

Coq. We believe our approach opens the door to significant

usability and performance improvements. We guarantee that

the user will never Require an out of date library, an unde-

sired action that is a common source of frustration among

Coq users. On the performance front, we can share .vo file

parsing among all the files in a theory, which saves a signifi-

cant amount of time. Moreover, this integration allows for

users to have very different build strategies tailored to their

particular needs. We have implemented a prototype of this

system for coq-lsp; the implementation relies on algebraic

effects in OCaml 5.0 [5], dispatching an effect every time a

Require statement is found.

1 Building Coq Theories Today
Coq users usually organize their developments (theories) as

a set of vernacular .v files. Such files, referred to as libraries,
can be required from other files using the Require command

— in a non-cyclic fashion — allowing users to access a wide

range of objects such as definitions, notations, etc. However,

before a user can access these objects, the file needs to be

processed by coqc to turn the text-based .v file into a .vo

file, which is a binary processed format obtained by dumping

Coq’s runtime object representation.

For many years, Coq users have relied on the make build

system to fully build their theories. A coq_makefile wrap-

per generates a Makefile that first runs coqdep, a special-

purpose lexer that tries to infer the set of libraries a .v file

depends on by resolving logical Coq names to file names.

The dependency information generated by coqdep will then

be used by make to determine the order in which the .v files

should be built.

While quite mature, this make-based setup has some down-

sides: make itself is limited in today’s context. For example,

make does not clean up stale object files, which is problem-

atic when there are unwanted object files in context that the

user is unaware of. Moreover, make is based on a notion of

timestamps, that prevents many useful optimizations such

as build caches. Further, the user must rebuild their project

manually every time it is updated.

Proof General [4] does provide a helper to build dependent

files automatically. This comes at the cost of re-implementing

a small build system inside Emacs, which can be hard to

maintain, and is often decoupled from upstream changes in

Coq. Editor support for automatically running make tends

not to be usable, as it is often too heavy.

There exists support for building Coq theories with more

advanced build systems such as Dune, a build system for

OCaml [3]. While Dune helps with some common make pit-

falls via a hash-based build and a shared build cache, the

user must still manually rebuild their project. This current

approach of manual building is cumbersome; it breaks the

natural proof writing workflow that the user has settled

into. Moreover, we introduce transient unsoundness into the

workspace via inconsistencies between the binaries and .v

files.

Deeper integration between build systems and compilers

has been explored recently in languages such as OCaml and

Rust; we believe that the Coq user experience may benefit a

lot from explorations in this direction.

Our aim is to provide a Coq user experience where ev-

erything “Just Works™”; to this end, we integrate .vo file

building with the coq-lsp document manager for Coq.

2 Implementation Outline
We implement our proposal on top of coq-lsp, a new doc-

ument checking engine for Coq based on the notion of an

effectful, memoized interpreter. coq-lsp has been influenced

by the literature on build systems and incremental comput-

ing. The process of checking a Coq file interactively with

coq-lsp can already be seen as the process of building a

document, and so it is natural to extend it with file-building

capabilities.

There are key points that make this process non-trivial.

In particular, coq-lsp is specialized for the often linear depen-

dency graph that is found inside proof documents, and will

avoid propagation of dependencies — which is often very

costly in this setup — by preferring a full memoized re-check,

assuming all the sentences after a change in the document

where impacted by it. This doesn’t work well with libraries

for two reasons: we cannot assume that a library update

impacts all files in the theory, as this is expensive, and doing



Emilio Jesús Gallego Arias and Bhakti Shah

type _ Effect.t =+ Requireeff : DirPath.t -> VoContents.t Effect.t

let eval_doc ~st = ...

| AstRequire lib ->

let vo = Eff.perform (Requireeff lib) in

let st = Memo.Interp.eval_require ~vo ~st in

...

Figure 1. Require effect and its use in the interpreter.

this could lead to cycles, which, in the document case, are

prevented by construction.

Instead, we use algebraic effects to implement a more

classical incremental computing setting. Changes to the in-

terpreter are detailed in Fig.1. The key idea is that we will

yield control to an upper layer using the Requireeff effect,

which will at some point resume document checking, provid-

ing the interpreter with a handle representing the contents

of the file in a way that can be efficiently memoized.

The effect is handled in the theory manager component of

coq-lsp, which knows what files are in scope, and maintains

this list in a table. We have extended the information for each

file in the theory with a new field, storing information on the

files that it is required by. We also use the existing field that

signals completion status to mark files as "dirty", to indicate

that recompilation will be required. Files can be in one of

two states: Completed, which indicates that the object file is

up to date, or Stopped, which indicates that recompilation

is required.

Then, when a Requireeff effect is received, we first register

the newly discovered dependency in the file table, if it wasn’t

already present. We then have two cases: the required file

is in a Completed state, and its handle can be served, or the

file is in the Stopped state and requires rebuilding, in which

case, we push it to the front of the build queue, and resume

checking.

The last bit of our implementation is when the document

manager receives a changes request for a file. In this case,

we will mark the files that depend on the changed file as

Stopped at position 0, which will force them to be rechecked

when some information is demanded from them. Note that

this process is memoized, and hence more efficient than the

naive implementation.

3 Perspectives and Future Work
Our implementation is still in a prototype stage; however,

we think our strategy does open up the door for further

experimentation, and we’d like to gather feedback from the

community. In particular, we think there is a wide range of

design options in terms of checking strategies that could

benefit actual Coq users. For example, we don’t necessarily

have to wait for the compilation of a .vo file to resume the

checking of a document that depends on it. We could emit a

warning and allow the user to continue working on their file

with a warning; when the file is ready, we can (transparently)

re-check the document; that may be fast if the changes made

in the depender play well with the document cache. Other

options are also possible.

There are important work items that we hope to complete

soon: for example, we have not provided a graphical UI to

provide feedback to the user about the status of file building

yet. Our implementation requires OCaml 5.0 and changes

to Coq; changes need to be upstreamed to make our setup

work with released Coq versions, and Ocaml 4.x (coq-lsp

has a way to "emulate" effects as to remain compatible with

the OCaml 4.x series).

Of particular importance is to ensure that our setup works

well with compilation setups where the proofs are skipped.

While this is not possible yet, we hope that requiring a file

where the opaque proofs have been skipped, and then up-

grading this file to fully check proofs, plays well with the

memoization strategy, that is to say: theorems are only re-

checked if the dependee file really changed the global uni-

verse graph in an important way.

Another important thing to understand is the cost of

change propagation; this can become a dominant factor for

large projects, given how frequent changes are in interactive

use. The spectrum of mitigations here is large, and we must

be able to measure the cost and associated patterns so as

to design and implement a propagation method that works

well in practice.

References
[1] coq-lsp, a LSP-compliant document manager for Coq, 2023.

[2] Salsa, a generic framework for on-demand, incrementalized computa-

tion., 2023.

[3] Andrey Mokhov, A. A. Memo: an incremental computation library

that powers Dune. Presented OCaml 2022, 2022.

[4] Aspinall, D. Proof general: A generic tool for proof development.

In Tools and Algorithms for Construction and Analysis of Systems, 6th
International Conference, TACAS 2000, Held as Part of the European Joint
Conferences on the Theory and Practice of Software, ETAPS 2000, Berlin,
Germany, March 25 - April 2, 2000, Proceedings (2000), S. Graf and M. I.

Schwartzbach, Eds., vol. 1785 of Lecture Notes in Computer Science,
Springer, pp. 38–42.

[5] Sivaramakrishnan, K. C., Dolan, S., White, L., Kelly, T., Jaffer, S.,

and Madhavapeddy, A. Retrofitting effect handlers onto ocaml. In

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada, June 20-25,
2021 (2021), S. N. Freund and E. Yahav, Eds., ACM, pp. 206–221.


	1 Building Coq Theories Today
	2 Implementation Outline
	3 Perspectives and Future Work
	References

