Visualizing Graphical Proofs in Coq

WHAT S THE PROBLEM?

Because the inductive representation carries a lot of structural information, textual representations of diagrams can be deeply nested, and hard to parse. This makes it difficult to identify sub-

WHAT'S THE SOLUTION?

The canonical representation of the ZX-calculus is primarily graphical. Thus, it seems natural that a visualization would make terms clearer Though our inductive structure conveys the same semantics as the graphical structure, we want to focus on the diagram's structure rather than its connectivity information. Using the canonical visual syntax thus would not be helpful: we must design a visualization that emphasizes structural information over connectivity information.
structures that can potentially be rewritten.

In the example above, we see the standard ZX diagram representation of the ZX-calculus rewrite rule spider fusion, followed by the visualization of the same rule under the inductive definition and semantics. Spider fusion is a simple rule: if two or more spiders of the same color are connected via one or more wires, we can fuse them into a single spider, which has a rotation equal to the sum of the original rotations. To verify this rule, we must account for the exact number of inputs and outputs to each spider: something that the original information: but the structure roughly matches the standard visualization, making it clear to the proof engineer what this is an implication of

SPIDER FUSION EXAMPLE

Z input (top + S mid) α t n_wire bot $\leftrightarrow \$$ top + S mid + bot, top + output n_wire top 1 Z (S mid + bot) output $\beta \$$
α Z (input + bot) (top + output) ($\alpha+\beta$)

z input (top $+S$ mid) a 1 nuire bot

Inductive Constructors
These are the constructors we use to form our induectively defined ZX diagrams. A diagram is parameterized over its inputs and outputs, so any
valid diagram has type $Z \mathrm{X}$ a b , where $\mathrm{a}, \mathrm{b} \in \mathbb{N}$. The constructors include the Z and X spiders, $Z X \quad a \quad b$, where $a, b \in \mathbb{N}$. The constructors incluac stacking, symmetries (swaps, caps, and cups), the hadamard box, the identit stacking, symmerries (swaps, caps, and cups), the hadamard box, the identity
wire, and the empty diagram. Additionally, we provide function to explicitly cast diagrams to have a different number of inputs and outputs, when given proos or equivalcnce of current and mesircd af eniss: we must explicitly consider symmetries as constructors as proofs often reason about them.

$\frac{\text { in out }: \mathbb{N} \quad \alpha: \mathbb{R}}{2 \text { in out } \alpha: \mathrm{ZX} \text { in out }}$

$\overline{\text { Wire: } \mathrm{ZX} \mathrm{K}_{1}} \quad \overline{\text { Cap }: \mathrm{ZX02}} \overline{\text { Cup : } \mathrm{ZX20}} \quad \frac{\text { in out }: \mathrm{N} \quad \alpha: \mathbb{R}}{\mathrm{X} \text { in out } \alpha: \mathrm{ZX} \text { in out }}$

- $\overline{\text { ox : } \mathrm{zx} 11} \overline{\text { Swap : } \mathrm{ZX22}} \overline{\text { Empty : } \mathrm{zx} 00}$

Cast $(\mathrm{nm}: \mathrm{N})\left\{\mathrm{n}^{\prime} \mathrm{m}^{\prime}: \mathrm{N}\right\}\left(\mathrm{prfn}: \mathrm{n}=\mathrm{n}^{\prime}\right)\left(\mathrm{prfm}: \mathrm{m}=\mathrm{m}^{\prime}\right)\left(\mathrm{zx}: \mathrm{zX} \mathrm{n}^{\prime} \mathrm{m}^{\prime}\right): \mathrm{zX} \mathrm{nm}$.

PROOF ENGINEERING EXPERIENCE
To make this tool optimally efficient, integrating it actively into the proof engineering workflow was integral. A visualizer for the inductive ZX-diagram definition alone would be useful, but manual input would diminish the ease of use, and hence we wanted to look into ways to client, such that a visualization of any active term in the goal would be generated. On a change in the goal state, the visualization would automatically be updated.

VISUALIZER \& IDE INTEGRATED

