
Visualizing Graphical Proofs in Coq Bhakti Shah
University of Chicago

The ZX-calculus
The ZX-calculus comprises of a set of rewrite rules
for manipulation of ZX diagrams, a diagrammatic
representation of quantum operations. The ZX-
calculus is an example of a symmetric monoidal

category.
ZX diagrams are graphs that consist of red and

green nodes, called Z and X spiders respectively.
Each spider has a number of inputs and outputs

(dimensions), as well as a rotational angle. Spiders
can be connected via edges.

The ZX-calculus has two important rules:
> only connectivity matters. Wires can be
arbitrarily deformed as long as the input and
output order to the overall diagram is
maintained.
> swapping red and green everywhere preserves
the truth of a rule.

Inductive Definition
To verify the ZX-calculus formally, the language
had to be fit to a format easy to reason about in a

proof assistant. Inductively defined types and
induction tactics were the de-facto choice.
Hence, the core language is is an inductive
structure representing string diagrams &

contributing, amongst other things, a set of base
morphisms and the ability to compose diagrams

sequentially (horizontally) and in parallel
(vertically).This representation does have its

drawbacks, and is less direct than the standard
graphical representation: a large amount of

graphical information is shoe-horned into a single
inductive structure.

visualizer & ide integrated

what’s the problem?
Because the inductive representation carries a lot of structural
information, textual representations of diagrams can be deeply

nested, and hard to parse. This makes it difficult to identify sub-
structures that can potentially be rewritten.

syntactically:

The concrete textual syntax for a Z spider is Z in out
rotation, where in, out ∈ ℕ, rotation ∈ ℝ.

Visually, it is represented as a green box with in, out
labeling the edges, and rotation in the center.

Vertical composition is represented textually by term
↕ term, while horizontal composition is term ↔

term. Visually, vertical composition is the placement of
two terms in the same column, while horizontal

composition is two terms in the same row. Equivalence
of terms is represented both visually and textually by

term ∝ term, where equivalent terms evaluate to the
same semantics (up to a constant factor). n_wire is a

function from a number n to a ZX diagram, that
constructs a ZX diagram consisting of n wires composed
vertically. Visually, n_wire is represented by the input
n in a quadrilateral, with ellipses above and below it. We

also have casts, that allow us to explicitly change the
dimensions of a ZX-diagram diagram to m’,n’ via
the syntax $ m’, n’ ::: diagram $. Visually,
this is represented by m’ and n’annotations on the left
and right sides of diagram, encapsulated in a dashed

box.

what’s the solution?
The canonical representation of the ZX-calculus is primarily graphical.

Thus, it seems natural that a visualization would make terms clearer.
Though our inductive structure conveys the same semantics as the

graphical structure, we want to focus on the diagram’s structure rather
than its connectivity information. Using the canonical visual syntax thus

would not be helpful: we must design a visualization that emphasizes
structural information over connectivity information.

editor state proof engineering experience
To make this tool optimally efficient, integrating it actively into the proof engineering workflow

was integral. A visualizer for the inductive ZX-diagram definition alone would be useful, but
manual input would diminish the ease of use, and hence we wanted to look into ways to

interleave it into the Coq ecosystem. We integrated the visualizer with the coq-lsp VSCode
client, such that a visualization of any active term in the goal would be generated. On a change

in the goal state, the visualization would automatically be updated.

Inductive Constructors
These are the constructors we use to form our inductively defined ZX

diagrams. A diagram is parameterized over its inputs and outputs, so any
valid diagram has type ZX a b, where a,b ∈ ℕ. The constructors include

the Z and X spiders, operations for horizontal composition and vertical
stacking, symmetries (swaps, caps, and cups), the hadamard box, the identity
wire, and the empty diagram. Additionally, we provide a function to explicitly

cast diagrams to have a different number of inputs and outputs, when given
proofs of equivalence of current and desired dimensions. This set of

constructors ensures readability and simplicity of proofs; we must explicitly
consider symmetries as constructors as proofs often reason about them.

building blocks of zx-diagrams

Z input (top + S mid) α ↕ n_wire bot
⟷ $ top + S mid + bot, top + output

::: n_wire top ↕ Z (S mid + bot) output β $
∝ Z (input + bot) (top + output) (α + β)

spider fusion example

X spider Z spider

Cup Cap Swap

Symmetries

references

John van de Wetering. 2020. ZX-calculus
for the working computer scientist. arXiv.

inQWIRE. VyZX: Verification of the ZX-
calculus. GitHub.

inQWIRE. ViZX: Visalization of the ZX-
calculus. GitHub.

Adrian Lehmann et al. 2021. VyZX: A
Vision for verifying the ZX-calculus.

GitHub.
In the example above, we see the standard ZX diagram representation of the ZX-calculus rewrite rule spider fusion, followed by the

visualization of the same rule under the inductive definition and semantics. Spider fusion is a simple rule: if two or more spiders of the same
color are connected via one or more wires, we can fuse them into a single spider, which has a rotation equal to the sum of the original
rotations. To verify this rule, we must account for the exact number of inputs and outputs to each spider: something that the original

visualization does not actually make explicit. In this case, we are left with this slightly more complex visualization of the term, carrying more
information: but the structure roughly matches the standard visualization, making it clear to the proof engineer what this is an implication of.

